Step |
Hyp |
Ref |
Expression |
1 |
|
bnj983.1 |
|
2 |
|
bnj983.2 |
|
3 |
|
bnj983.3 |
|
4 |
|
bnj983.4 |
|
5 |
|
bnj983.5 |
|
6 |
1 2 3 4
|
bnj882 |
|
7 |
6
|
eleq2i |
|
8 |
|
eliun |
|
9 |
|
eliun |
|
10 |
9
|
rexbii |
|
11 |
8 10
|
bitri |
|
12 |
|
df-rex |
|
13 |
4
|
abeq2i |
|
14 |
13
|
anbi1i |
|
15 |
14
|
exbii |
|
16 |
12 15
|
bitri |
|
17 |
7 11 16
|
3bitri |
|
18 |
|
bnj252 |
|
19 |
5 18
|
bitri |
|
20 |
19
|
exbii |
|
21 |
20
|
anbi1i |
|
22 |
|
df-rex |
|
23 |
|
df-rex |
|
24 |
22 23
|
anbi12i |
|
25 |
21 24
|
bitr4i |
|
26 |
17 25
|
bnj133 |
|
27 |
|
19.41v |
|
28 |
26 27
|
bnj133 |
|
29 |
2
|
bnj1095 |
|
30 |
29 5
|
bnj1096 |
|
31 |
30
|
nf5i |
|
32 |
31
|
19.42 |
|
33 |
32
|
2exbii |
|
34 |
28 33
|
bitr4i |
|
35 |
|
3anass |
|
36 |
35
|
3exbii |
|
37 |
|
fndm |
|
38 |
5 37
|
bnj770 |
|
39 |
|
eleq2 |
|
40 |
39
|
3anbi2d |
|
41 |
38 40
|
syl |
|
42 |
41
|
3ad2ant1 |
|
43 |
42
|
ibi |
|
44 |
41
|
3ad2ant1 |
|
45 |
44
|
ibir |
|
46 |
43 45
|
impbii |
|
47 |
46
|
3exbii |
|
48 |
34 36 47
|
3bitr2i |
|