Metamath Proof Explorer


Theorem bnj983

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj983.1 φ f = pred X A R
bnj983.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj983.3 D = ω
bnj983.4 B = f | n D f Fn n φ ψ
bnj983.5 χ n D f Fn n φ ψ
Assertion bnj983 Z trCl X A R f n i χ i n Z f i

Proof

Step Hyp Ref Expression
1 bnj983.1 φ f = pred X A R
2 bnj983.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj983.3 D = ω
4 bnj983.4 B = f | n D f Fn n φ ψ
5 bnj983.5 χ n D f Fn n φ ψ
6 1 2 3 4 bnj882 trCl X A R = f B i dom f f i
7 6 eleq2i Z trCl X A R Z f B i dom f f i
8 eliun Z f B i dom f f i f B Z i dom f f i
9 eliun Z i dom f f i i dom f Z f i
10 9 rexbii f B Z i dom f f i f B i dom f Z f i
11 8 10 bitri Z f B i dom f f i f B i dom f Z f i
12 df-rex f B i dom f Z f i f f B i dom f Z f i
13 4 abeq2i f B n D f Fn n φ ψ
14 13 anbi1i f B i dom f Z f i n D f Fn n φ ψ i dom f Z f i
15 14 exbii f f B i dom f Z f i f n D f Fn n φ ψ i dom f Z f i
16 12 15 bitri f B i dom f Z f i f n D f Fn n φ ψ i dom f Z f i
17 7 11 16 3bitri Z trCl X A R f n D f Fn n φ ψ i dom f Z f i
18 bnj252 n D f Fn n φ ψ n D f Fn n φ ψ
19 5 18 bitri χ n D f Fn n φ ψ
20 19 exbii n χ n n D f Fn n φ ψ
21 20 anbi1i n χ i i dom f Z f i n n D f Fn n φ ψ i i dom f Z f i
22 df-rex n D f Fn n φ ψ n n D f Fn n φ ψ
23 df-rex i dom f Z f i i i dom f Z f i
24 22 23 anbi12i n D f Fn n φ ψ i dom f Z f i n n D f Fn n φ ψ i i dom f Z f i
25 21 24 bitr4i n χ i i dom f Z f i n D f Fn n φ ψ i dom f Z f i
26 17 25 bnj133 Z trCl X A R f n χ i i dom f Z f i
27 19.41v n χ i i dom f Z f i n χ i i dom f Z f i
28 26 27 bnj133 Z trCl X A R f n χ i i dom f Z f i
29 2 bnj1095 ψ i ψ
30 29 5 bnj1096 χ i χ
31 30 nf5i i χ
32 31 19.42 i χ i dom f Z f i χ i i dom f Z f i
33 32 2exbii f n i χ i dom f Z f i f n χ i i dom f Z f i
34 28 33 bitr4i Z trCl X A R f n i χ i dom f Z f i
35 3anass χ i dom f Z f i χ i dom f Z f i
36 35 3exbii f n i χ i dom f Z f i f n i χ i dom f Z f i
37 fndm f Fn n dom f = n
38 5 37 bnj770 χ dom f = n
39 eleq2 dom f = n i dom f i n
40 39 3anbi2d dom f = n χ i dom f Z f i χ i n Z f i
41 38 40 syl χ χ i dom f Z f i χ i n Z f i
42 41 3ad2ant1 χ i dom f Z f i χ i dom f Z f i χ i n Z f i
43 42 ibi χ i dom f Z f i χ i n Z f i
44 41 3ad2ant1 χ i n Z f i χ i dom f Z f i χ i n Z f i
45 44 ibir χ i n Z f i χ i dom f Z f i
46 43 45 impbii χ i dom f Z f i χ i n Z f i
47 46 3exbii f n i χ i dom f Z f i f n i χ i n Z f i
48 34 36 47 3bitr2i Z trCl X A R f n i χ i n Z f i