Metamath Proof Explorer


Theorem bnj985v

Description: Version of bnj985 with an additional disjoint variable condition, not requiring ax-13 . (Contributed by Gino Giotto, 27-Mar-2024) (New usage is discouraged.)

Ref Expression
Hypotheses bnj985v.3 χ n D f Fn n φ ψ
bnj985v.6 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj985v.9 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj985v.11 B = f | n D f Fn n φ ψ
bnj985v.13 G = f n C
Assertion bnj985v Could not format assertion : No typesetting found for |- ( G e. B <-> E. p ch" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj985v.3 χ n D f Fn n φ ψ
2 bnj985v.6 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
3 bnj985v.9 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
4 bnj985v.11 B = f | n D f Fn n φ ψ
5 bnj985v.13 G = f n C
6 5 bnj918 G V
7 1 4 bnj984 G V G B [˙G / f]˙ n χ
8 6 7 ax-mp G B [˙G / f]˙ n χ
9 sbcex2 Could not format ( [. G / f ]. E. p ch' <-> E. p [. G / f ]. ch' ) : No typesetting found for |- ( [. G / f ]. E. p ch' <-> E. p [. G / f ]. ch' ) with typecode |-
10 nfv p χ
11 10 sb8ev n χ p p n χ
12 sbsbc p n χ [˙p / n]˙ χ
13 12 exbii p p n χ p [˙p / n]˙ χ
14 11 13 bitri n χ p [˙p / n]˙ χ
15 14 2 bnj133 Could not format ( E. n ch <-> E. p ch' ) : No typesetting found for |- ( E. n ch <-> E. p ch' ) with typecode |-
16 15 sbcbii Could not format ( [. G / f ]. E. n ch <-> [. G / f ]. E. p ch' ) : No typesetting found for |- ( [. G / f ]. E. n ch <-> [. G / f ]. E. p ch' ) with typecode |-
17 3 exbii Could not format ( E. p ch" <-> E. p [. G / f ]. ch' ) : No typesetting found for |- ( E. p ch" <-> E. p [. G / f ]. ch' ) with typecode |-
18 9 16 17 3bitr4i Could not format ( [. G / f ]. E. n ch <-> E. p ch" ) : No typesetting found for |- ( [. G / f ]. E. n ch <-> E. p ch" ) with typecode |-
19 8 18 bitri Could not format ( G e. B <-> E. p ch" ) : No typesetting found for |- ( G e. B <-> E. p ch" ) with typecode |-