Metamath Proof Explorer


Theorem bnj996

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj996.1 φ f = pred X A R
bnj996.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj996.3 χ n D f Fn n φ ψ
bnj996.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj996.5 τ m ω n = suc m p = suc n
bnj996.6 η i n y f i
bnj996.13 D = ω
bnj996.14 B = f | n D f Fn n φ ψ
Assertion bnj996 f n i m p θ χ τ η

Proof

Step Hyp Ref Expression
1 bnj996.1 φ f = pred X A R
2 bnj996.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj996.3 χ n D f Fn n φ ψ
4 bnj996.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj996.5 τ m ω n = suc m p = suc n
6 bnj996.6 η i n y f i
7 bnj996.13 D = ω
8 bnj996.14 B = f | n D f Fn n φ ψ
9 1 2 7 8 3 bnj917 y trCl X A R f n i χ i n y f i
10 4 9 bnj771 θ f n i χ i n y f i
11 3anass χ i n y f i χ i n y f i
12 6 anbi2i χ η χ i n y f i
13 11 12 bitr4i χ i n y f i χ η
14 13 3exbii f n i χ i n y f i f n i χ η
15 10 14 sylib θ f n i χ η
16 3 7 5 bnj986 χ m p τ
17 16 ancli χ χ m p τ
18 19.42vv m p χ τ χ m p τ
19 17 18 sylibr χ m p χ τ
20 19 anim1i χ η m p χ τ η
21 19.41vv m p χ τ η m p χ τ η
22 20 21 sylibr χ η m p χ τ η
23 df-3an χ τ η χ τ η
24 23 2exbii m p χ τ η m p χ τ η
25 22 24 sylibr χ η m p χ τ η
26 25 2eximi n i χ η n i m p χ τ η
27 15 26 bnj593 θ f n i m p χ τ η
28 19.37v p θ χ τ η θ p χ τ η
29 28 exbii m p θ χ τ η m θ p χ τ η
30 29 bnj132 m p θ χ τ η θ m p χ τ η
31 30 exbii i m p θ χ τ η i θ m p χ τ η
32 31 bnj132 i m p θ χ τ η θ i m p χ τ η
33 32 exbii n i m p θ χ τ η n θ i m p χ τ η
34 33 bnj132 n i m p θ χ τ η θ n i m p χ τ η
35 34 exbii f n i m p θ χ τ η f θ n i m p χ τ η
36 35 bnj132 f n i m p θ χ τ η θ f n i m p χ τ η
37 27 36 mpbir f n i m p θ χ τ η