Metamath Proof Explorer


Theorem bnj998

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj998.1 φ f = pred X A R
bnj998.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj998.3 χ n D f Fn n φ ψ
bnj998.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj998.5 τ m ω n = suc m p = suc n
bnj998.7 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj998.8 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj998.9 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj998.10 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj998.11 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj998.12 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj998.13 D = ω
bnj998.14 B = f | n D f Fn n φ ψ
bnj998.15 C = y f m pred y A R
bnj998.16 G = f n C
Assertion bnj998 Could not format assertion : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ch" ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj998.1 φ f = pred X A R
2 bnj998.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj998.3 χ n D f Fn n φ ψ
4 bnj998.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj998.5 τ m ω n = suc m p = suc n
6 bnj998.7 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
7 bnj998.8 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
8 bnj998.9 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
9 bnj998.10 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
10 bnj998.11 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
11 bnj998.12 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
12 bnj998.13 D = ω
13 bnj998.14 B = f | n D f Fn n φ ψ
14 bnj998.15 C = y f m pred y A R
15 bnj998.16 G = f n C
16 bnj253 R FrSe A X A y trCl X A R z pred y A R R FrSe A X A y trCl X A R z pred y A R
17 16 simp1bi R FrSe A X A y trCl X A R z pred y A R R FrSe A X A
18 4 17 sylbi θ R FrSe A X A
19 18 bnj705 θ χ τ η R FrSe A X A
20 bnj643 θ χ τ η χ
21 3simpc m ω n = suc m p = suc n n = suc m p = suc n
22 5 21 sylbi τ n = suc m p = suc n
23 22 bnj707 θ χ τ η n = suc m p = suc n
24 bnj255 R FrSe A X A χ n = suc m p = suc n R FrSe A X A χ n = suc m p = suc n
25 19 20 23 24 syl3anbrc θ χ τ η R FrSe A X A χ n = suc m p = suc n
26 bnj252 R FrSe A X A χ n = suc m p = suc n R FrSe A X A χ n = suc m p = suc n
27 25 26 sylib θ χ τ η R FrSe A X A χ n = suc m p = suc n
28 biid f Fn n φ ψ f Fn n φ ψ
29 biid n D p = suc n m n n D p = suc n m n
30 1 2 3 6 7 8 9 10 11 12 13 14 15 28 29 bnj910 Could not format ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ch" ) : No typesetting found for |- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ch" ) with typecode |-
31 27 30 syl Could not format ( ( th /\ ch /\ ta /\ et ) -> ch" ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ch" ) with typecode |-