Metamath Proof Explorer


Theorem bnnv

Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007) Use bnnvc instead. (New usage is discouraged.)

Ref Expression
Assertion bnnv U CBan U NrmCVec

Proof

Step Hyp Ref Expression
1 eqid BaseSet U = BaseSet U
2 eqid IndMet U = IndMet U
3 1 2 iscbn U CBan U NrmCVec IndMet U CMet BaseSet U
4 3 simplbi U CBan U NrmCVec