| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  | 
						
							| 2 |  | ssel |  | 
						
							| 3 | 2 | ral2imi |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 | 4 | impr |  | 
						
							| 6 |  | eleq2 |  | 
						
							| 7 |  | eleq2 |  | 
						
							| 8 |  | simplr |  | 
						
							| 9 |  | ssel2 |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 6 7 8 10 | ifbothda |  | 
						
							| 12 | 11 | ex |  | 
						
							| 13 | 12 | ral2imi |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | impr |  | 
						
							| 16 | 1 15 | jca |  | 
						
							| 17 | 16 | ralrimivw |  | 
						
							| 18 | 1 5 17 | jca31 |  | 
						
							| 19 |  | simprll |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 | ralimi |  | 
						
							| 22 |  | ralcom |  | 
						
							| 23 |  | iftrue |  | 
						
							| 24 | 23 | equcoms |  | 
						
							| 25 | 24 | eleq2d |  | 
						
							| 26 | 25 | rspcva |  | 
						
							| 27 | 26 | ralimiaa |  | 
						
							| 28 | 22 27 | sylbi |  | 
						
							| 29 | 21 28 | syl |  | 
						
							| 30 | 29 | ad2antll |  | 
						
							| 31 | 19 30 | jca |  | 
						
							| 32 | 18 31 | impbida |  | 
						
							| 33 |  | vex |  | 
						
							| 34 | 33 | elixp |  | 
						
							| 35 |  | elin |  | 
						
							| 36 | 33 | elixp |  | 
						
							| 37 |  | eliin |  | 
						
							| 38 | 37 | elv |  | 
						
							| 39 | 33 | elixp |  | 
						
							| 40 | 39 | ralbii |  | 
						
							| 41 | 38 40 | bitri |  | 
						
							| 42 | 36 41 | anbi12i |  | 
						
							| 43 | 35 42 | bitri |  | 
						
							| 44 | 32 34 43 | 3bitr4g |  | 
						
							| 45 | 44 | eqrdv |  |