Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|
2 |
|
ssel |
|
3 |
2
|
ral2imi |
|
4 |
3
|
adantr |
|
5 |
4
|
impr |
|
6 |
|
eleq2 |
|
7 |
|
eleq2 |
|
8 |
|
simplr |
|
9 |
|
ssel2 |
|
10 |
9
|
adantr |
|
11 |
6 7 8 10
|
ifbothda |
|
12 |
11
|
ex |
|
13 |
12
|
ral2imi |
|
14 |
13
|
adantr |
|
15 |
14
|
impr |
|
16 |
1 15
|
jca |
|
17 |
16
|
ralrimivw |
|
18 |
1 5 17
|
jca31 |
|
19 |
|
simprll |
|
20 |
|
simpr |
|
21 |
20
|
ralimi |
|
22 |
|
ralcom |
|
23 |
|
iftrue |
|
24 |
23
|
equcoms |
|
25 |
24
|
eleq2d |
|
26 |
25
|
rspcva |
|
27 |
26
|
ralimiaa |
|
28 |
22 27
|
sylbi |
|
29 |
21 28
|
syl |
|
30 |
29
|
ad2antll |
|
31 |
19 30
|
jca |
|
32 |
18 31
|
impbida |
|
33 |
|
vex |
|
34 |
33
|
elixp |
|
35 |
|
elin |
|
36 |
33
|
elixp |
|
37 |
|
eliin |
|
38 |
37
|
elv |
|
39 |
33
|
elixp |
|
40 |
39
|
ralbii |
|
41 |
38 40
|
bitri |
|
42 |
36 41
|
anbi12i |
|
43 |
35 42
|
bitri |
|
44 |
32 34 43
|
3bitr4g |
|
45 |
44
|
eqrdv |
|