Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
|
2 |
|
bpolyval |
|
3 |
1 2
|
mpan |
|
4 |
|
exp1 |
|
5 |
|
1m1e0 |
|
6 |
5
|
oveq2i |
|
7 |
6
|
sumeq1i |
|
8 |
|
0z |
|
9 |
|
bpoly0 |
|
10 |
9
|
oveq1d |
|
11 |
10
|
oveq2d |
|
12 |
|
halfcn |
|
13 |
12
|
mulid2i |
|
14 |
11 13
|
eqtrdi |
|
15 |
14 12
|
eqeltrdi |
|
16 |
|
oveq2 |
|
17 |
|
bcn0 |
|
18 |
1 17
|
ax-mp |
|
19 |
16 18
|
eqtrdi |
|
20 |
|
oveq1 |
|
21 |
|
oveq2 |
|
22 |
|
1m0e1 |
|
23 |
21 22
|
eqtrdi |
|
24 |
23
|
oveq1d |
|
25 |
|
df-2 |
|
26 |
24 25
|
eqtr4di |
|
27 |
20 26
|
oveq12d |
|
28 |
19 27
|
oveq12d |
|
29 |
28
|
fsum1 |
|
30 |
8 15 29
|
sylancr |
|
31 |
30 14
|
eqtrd |
|
32 |
7 31
|
eqtrid |
|
33 |
4 32
|
oveq12d |
|
34 |
3 33
|
eqtrd |
|