Metamath Proof Explorer


Theorem bpoly4

Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion bpoly4 X 4 BernPoly X = X 4 2 X 3 + X 2 - 1 30

Proof

Step Hyp Ref Expression
1 4nn0 4 0
2 bpolyval 4 0 X 4 BernPoly X = X 4 k = 0 4 1 ( 4 k) k BernPoly X 4 - k + 1
3 1 2 mpan X 4 BernPoly X = X 4 k = 0 4 1 ( 4 k) k BernPoly X 4 - k + 1
4 4m1e3 4 1 = 3
5 df-3 3 = 2 + 1
6 4 5 eqtri 4 1 = 2 + 1
7 6 oveq2i 0 4 1 = 0 2 + 1
8 7 sumeq1i k = 0 4 1 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 2 + 1 ( 4 k) k BernPoly X 4 - k + 1
9 2eluzge0 2 0
10 9 a1i X 2 0
11 elfzelz k 0 2 + 1 k
12 bccl 4 0 k ( 4 k) 0
13 1 11 12 sylancr k 0 2 + 1 ( 4 k) 0
14 13 nn0cnd k 0 2 + 1 ( 4 k)
15 14 adantl X k 0 2 + 1 ( 4 k)
16 elfznn0 k 0 2 + 1 k 0
17 bpolycl k 0 X k BernPoly X
18 16 17 sylan k 0 2 + 1 X k BernPoly X
19 18 ancoms X k 0 2 + 1 k BernPoly X
20 4re 4
21 20 a1i k 0 2 + 1 4
22 11 zred k 0 2 + 1 k
23 21 22 resubcld k 0 2 + 1 4 k
24 peano2re 4 k 4 - k + 1
25 23 24 syl k 0 2 + 1 4 - k + 1
26 25 recnd k 0 2 + 1 4 - k + 1
27 26 adantl X k 0 2 + 1 4 - k + 1
28 1red k 0 2 + 1 1
29 5 oveq2i 0 3 = 0 2 + 1
30 29 eleq2i k 0 3 k 0 2 + 1
31 elfzelz k 0 3 k
32 31 zred k 0 3 k
33 3re 3
34 33 a1i k 0 3 3
35 20 a1i k 0 3 4
36 elfzle2 k 0 3 k 3
37 3lt4 3 < 4
38 37 a1i k 0 3 3 < 4
39 32 34 35 36 38 lelttrd k 0 3 k < 4
40 30 39 sylbir k 0 2 + 1 k < 4
41 22 21 posdifd k 0 2 + 1 k < 4 0 < 4 k
42 40 41 mpbid k 0 2 + 1 0 < 4 k
43 0lt1 0 < 1
44 43 a1i k 0 2 + 1 0 < 1
45 23 28 42 44 addgt0d k 0 2 + 1 0 < 4 - k + 1
46 45 gt0ne0d k 0 2 + 1 4 - k + 1 0
47 46 adantl X k 0 2 + 1 4 - k + 1 0
48 19 27 47 divcld X k 0 2 + 1 k BernPoly X 4 - k + 1
49 15 48 mulcld X k 0 2 + 1 ( 4 k) k BernPoly X 4 - k + 1
50 5 eqeq2i k = 3 k = 2 + 1
51 oveq2 k = 3 ( 4 k) = ( 4 3 )
52 4bc3eq4 ( 4 3 ) = 4
53 51 52 eqtrdi k = 3 ( 4 k) = 4
54 oveq1 k = 3 k BernPoly X = 3 BernPoly X
55 oveq2 k = 3 4 k = 4 3
56 55 oveq1d k = 3 4 - k + 1 = 4 - 3 + 1
57 4cn 4
58 3cn 3
59 ax-1cn 1
60 3p1e4 3 + 1 = 4
61 57 58 59 60 subaddrii 4 3 = 1
62 61 oveq1i 4 - 3 + 1 = 1 + 1
63 df-2 2 = 1 + 1
64 62 63 eqtr4i 4 - 3 + 1 = 2
65 56 64 eqtrdi k = 3 4 - k + 1 = 2
66 54 65 oveq12d k = 3 k BernPoly X 4 - k + 1 = 3 BernPoly X 2
67 53 66 oveq12d k = 3 ( 4 k) k BernPoly X 4 - k + 1 = 4 3 BernPoly X 2
68 50 67 sylbir k = 2 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 4 3 BernPoly X 2
69 10 49 68 fsump1 X k = 0 2 + 1 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 2 ( 4 k) k BernPoly X 4 - k + 1 + 4 3 BernPoly X 2
70 63 oveq2i 0 2 = 0 1 + 1
71 70 sumeq1i k = 0 2 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 1 + 1 ( 4 k) k BernPoly X 4 - k + 1
72 1eluzge0 1 0
73 72 a1i X 1 0
74 fzssp1 0 1 + 1 0 1 + 1 + 1
75 63 oveq1i 2 + 1 = 1 + 1 + 1
76 75 oveq2i 0 2 + 1 = 0 1 + 1 + 1
77 74 76 sseqtrri 0 1 + 1 0 2 + 1
78 77 sseli k 0 1 + 1 k 0 2 + 1
79 78 49 sylan2 X k 0 1 + 1 ( 4 k) k BernPoly X 4 - k + 1
80 63 eqeq2i k = 2 k = 1 + 1
81 oveq2 k = 2 ( 4 k) = ( 4 2 )
82 4bc2eq6 ( 4 2 ) = 6
83 81 82 eqtrdi k = 2 ( 4 k) = 6
84 oveq1 k = 2 k BernPoly X = 2 BernPoly X
85 oveq2 k = 2 4 k = 4 2
86 85 oveq1d k = 2 4 - k + 1 = 4 - 2 + 1
87 2cn 2
88 2p2e4 2 + 2 = 4
89 57 87 87 88 subaddrii 4 2 = 2
90 89 oveq1i 4 - 2 + 1 = 2 + 1
91 90 5 eqtr4i 4 - 2 + 1 = 3
92 86 91 eqtrdi k = 2 4 - k + 1 = 3
93 84 92 oveq12d k = 2 k BernPoly X 4 - k + 1 = 2 BernPoly X 3
94 83 93 oveq12d k = 2 ( 4 k) k BernPoly X 4 - k + 1 = 6 2 BernPoly X 3
95 80 94 sylbir k = 1 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 6 2 BernPoly X 3
96 73 79 95 fsump1 X k = 0 1 + 1 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 1 ( 4 k) k BernPoly X 4 - k + 1 + 6 2 BernPoly X 3
97 0p1e1 0 + 1 = 1
98 97 oveq2i 0 0 + 1 = 0 1
99 98 sumeq1i k = 0 0 + 1 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 1 ( 4 k) k BernPoly X 4 - k + 1
100 0nn0 0 0
101 nn0uz 0 = 0
102 100 101 eleqtri 0 0
103 102 a1i X 0 0
104 3nn 3
105 nnuz = 1
106 104 105 eleqtri 3 1
107 fzss2 3 1 0 1 0 3
108 106 107 ax-mp 0 1 0 3
109 2p1e3 2 + 1 = 3
110 109 oveq2i 0 2 + 1 = 0 3
111 108 98 110 3sstr4i 0 0 + 1 0 2 + 1
112 111 sseli k 0 0 + 1 k 0 2 + 1
113 112 49 sylan2 X k 0 0 + 1 ( 4 k) k BernPoly X 4 - k + 1
114 97 eqeq2i k = 0 + 1 k = 1
115 oveq2 k = 1 ( 4 k) = ( 4 1 )
116 bcn1 4 0 ( 4 1 ) = 4
117 1 116 ax-mp ( 4 1 ) = 4
118 115 117 eqtrdi k = 1 ( 4 k) = 4
119 oveq1 k = 1 k BernPoly X = 1 BernPoly X
120 oveq2 k = 1 4 k = 4 1
121 120 oveq1d k = 1 4 - k + 1 = 4 - 1 + 1
122 4 oveq1i 4 - 1 + 1 = 3 + 1
123 df-4 4 = 3 + 1
124 122 123 eqtr4i 4 - 1 + 1 = 4
125 121 124 eqtrdi k = 1 4 - k + 1 = 4
126 119 125 oveq12d k = 1 k BernPoly X 4 - k + 1 = 1 BernPoly X 4
127 118 126 oveq12d k = 1 ( 4 k) k BernPoly X 4 - k + 1 = 4 1 BernPoly X 4
128 114 127 sylbi k = 0 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 4 1 BernPoly X 4
129 103 113 128 fsump1 X k = 0 0 + 1 ( 4 k) k BernPoly X 4 - k + 1 = k = 0 0 ( 4 k) k BernPoly X 4 - k + 1 + 4 1 BernPoly X 4
130 0z 0
131 59 a1i X 1
132 bpolycl 0 0 X 0 BernPoly X
133 100 132 mpan X 0 BernPoly X
134 5cn 5
135 134 a1i X 5
136 0re 0
137 5pos 0 < 5
138 136 137 gtneii 5 0
139 138 a1i X 5 0
140 133 135 139 divcld X 0 BernPoly X 5
141 131 140 mulcld X 1 0 BernPoly X 5
142 oveq2 k = 0 ( 4 k) = ( 4 0 )
143 bcn0 4 0 ( 4 0 ) = 1
144 1 143 ax-mp ( 4 0 ) = 1
145 142 144 eqtrdi k = 0 ( 4 k) = 1
146 oveq1 k = 0 k BernPoly X = 0 BernPoly X
147 oveq2 k = 0 4 k = 4 0
148 147 oveq1d k = 0 4 - k + 1 = 4 - 0 + 1
149 57 subid1i 4 0 = 4
150 149 oveq1i 4 - 0 + 1 = 4 + 1
151 4p1e5 4 + 1 = 5
152 150 151 eqtri 4 - 0 + 1 = 5
153 148 152 eqtrdi k = 0 4 - k + 1 = 5
154 146 153 oveq12d k = 0 k BernPoly X 4 - k + 1 = 0 BernPoly X 5
155 145 154 oveq12d k = 0 ( 4 k) k BernPoly X 4 - k + 1 = 1 0 BernPoly X 5
156 155 fsum1 0 1 0 BernPoly X 5 k = 0 0 ( 4 k) k BernPoly X 4 - k + 1 = 1 0 BernPoly X 5
157 130 141 156 sylancr X k = 0 0 ( 4 k) k BernPoly X 4 - k + 1 = 1 0 BernPoly X 5
158 bpoly0 X 0 BernPoly X = 1
159 158 oveq1d X 0 BernPoly X 5 = 1 5
160 159 oveq2d X 1 0 BernPoly X 5 = 1 1 5
161 134 138 reccli 1 5
162 161 mulid2i 1 1 5 = 1 5
163 160 162 eqtrdi X 1 0 BernPoly X 5 = 1 5
164 157 163 eqtrd X k = 0 0 ( 4 k) k BernPoly X 4 - k + 1 = 1 5
165 1nn0 1 0
166 bpolycl 1 0 X 1 BernPoly X
167 165 166 mpan X 1 BernPoly X
168 nn0cn 4 0 4
169 1 168 mp1i X 4
170 4ne0 4 0
171 170 a1i X 4 0
172 167 169 171 divcan2d X 4 1 BernPoly X 4 = 1 BernPoly X
173 bpoly1 X 1 BernPoly X = X 1 2
174 172 173 eqtrd X 4 1 BernPoly X 4 = X 1 2
175 164 174 oveq12d X k = 0 0 ( 4 k) k BernPoly X 4 - k + 1 + 4 1 BernPoly X 4 = 1 5 + X - 1 2
176 129 175 eqtrd X k = 0 0 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X - 1 2
177 99 176 eqtr3id X k = 0 1 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X - 1 2
178 6cn 6
179 178 a1i X 6
180 2nn0 2 0
181 bpolycl 2 0 X 2 BernPoly X
182 180 181 mpan X 2 BernPoly X
183 58 a1i X 3
184 3ne0 3 0
185 184 a1i X 3 0
186 179 182 183 185 div12d X 6 2 BernPoly X 3 = 2 BernPoly X 6 3
187 3t2e6 3 2 = 6
188 178 58 87 184 divmuli 6 3 = 2 3 2 = 6
189 187 188 mpbir 6 3 = 2
190 189 oveq2i 2 BernPoly X 6 3 = 2 BernPoly X 2
191 87 a1i X 2
192 182 191 mulcomd X 2 BernPoly X 2 = 2 2 BernPoly X
193 bpoly2 X 2 BernPoly X = X 2 - X + 1 6
194 193 oveq2d X 2 2 BernPoly X = 2 X 2 - X + 1 6
195 192 194 eqtrd X 2 BernPoly X 2 = 2 X 2 - X + 1 6
196 190 195 eqtrid X 2 BernPoly X 6 3 = 2 X 2 - X + 1 6
197 186 196 eqtrd X 6 2 BernPoly X 3 = 2 X 2 - X + 1 6
198 177 197 oveq12d X k = 0 1 ( 4 k) k BernPoly X 4 - k + 1 + 6 2 BernPoly X 3 = 1 5 + X 1 2 + 2 X 2 - X + 1 6
199 96 198 eqtrd X k = 0 1 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X 1 2 + 2 X 2 - X + 1 6
200 71 199 eqtrid X k = 0 2 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X 1 2 + 2 X 2 - X + 1 6
201 3nn0 3 0
202 bpolycl 3 0 X 3 BernPoly X
203 201 202 mpan X 3 BernPoly X
204 2ne0 2 0
205 204 a1i X 2 0
206 169 203 191 205 div12d X 4 3 BernPoly X 2 = 3 BernPoly X 4 2
207 4d2e2 4 2 = 2
208 207 oveq2i 3 BernPoly X 4 2 = 3 BernPoly X 2
209 203 191 mulcomd X 3 BernPoly X 2 = 2 3 BernPoly X
210 bpoly3 X 3 BernPoly X = X 3 - 3 2 X 2 + 1 2 X
211 210 oveq2d X 2 3 BernPoly X = 2 X 3 - 3 2 X 2 + 1 2 X
212 209 211 eqtrd X 3 BernPoly X 2 = 2 X 3 - 3 2 X 2 + 1 2 X
213 208 212 eqtrid X 3 BernPoly X 4 2 = 2 X 3 - 3 2 X 2 + 1 2 X
214 206 213 eqtrd X 4 3 BernPoly X 2 = 2 X 3 - 3 2 X 2 + 1 2 X
215 200 214 oveq12d X k = 0 2 ( 4 k) k BernPoly X 4 - k + 1 + 4 3 BernPoly X 2 = 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X
216 69 215 eqtrd X k = 0 2 + 1 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X
217 8 216 eqtrid X k = 0 4 1 ( 4 k) k BernPoly X 4 - k + 1 = 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X
218 217 oveq2d X X 4 k = 0 4 1 ( 4 k) k BernPoly X 4 - k + 1 = X 4 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X
219 expcl X 4 0 X 4
220 1 219 mpan2 X X 4
221 expcl X 3 0 X 3
222 201 221 mpan2 X X 3
223 191 222 mulcld X 2 X 3
224 sqcl X X 2
225 201 100 deccl 30 0
226 225 nn0cni 30
227 dfdec10 30 = 10 3 + 0
228 10re 10
229 228 recni 10
230 229 58 mulcli 10 3
231 230 addid1i 10 3 + 0 = 10 3
232 227 231 eqtri 30 = 10 3
233 10pos 0 < 10
234 136 233 gtneii 10 0
235 229 58 234 184 mulne0i 10 3 0
236 232 235 eqnetri 30 0
237 226 236 reccli 1 30
238 237 a1i X 1 30
239 224 238 subcld X X 2 1 30
240 220 223 239 subsubd X X 4 2 X 3 X 2 1 30 = X 4 2 X 3 + X 2 - 1 30
241 161 a1i X 1 5
242 id X X
243 87 204 reccli 1 2
244 243 a1i X 1 2
245 242 244 subcld X X 1 2
246 241 245 addcld X 1 5 + X - 1 2
247 224 242 subcld X X 2 X
248 6pos 0 < 6
249 136 248 gtneii 6 0
250 178 249 reccli 1 6
251 250 a1i X 1 6
252 247 251 addcld X X 2 - X + 1 6
253 191 252 mulcld X 2 X 2 - X + 1 6
254 246 253 addcld X 1 5 + X 1 2 + 2 X 2 - X + 1 6
255 58 87 204 divcli 3 2
256 255 a1i X 3 2
257 256 224 mulcld X 3 2 X 2
258 222 257 subcld X X 3 3 2 X 2
259 244 242 mulcld X 1 2 X
260 258 259 addcld X X 3 - 3 2 X 2 + 1 2 X
261 191 260 mulcld X 2 X 3 - 3 2 X 2 + 1 2 X
262 254 261 addcomd X 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X = 2 X 3 - 3 2 X 2 + 1 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6
263 191 258 259 adddid X 2 X 3 - 3 2 X 2 + 1 2 X = 2 X 3 3 2 X 2 + 2 1 2 X
264 191 222 257 subdid X 2 X 3 3 2 X 2 = 2 X 3 2 3 2 X 2
265 87 204 recidi 2 1 2 = 1
266 265 oveq1i 2 1 2 X = 1 X
267 191 244 242 mulassd X 2 1 2 X = 2 1 2 X
268 mulid2 X 1 X = X
269 266 267 268 3eqtr3a X 2 1 2 X = X
270 264 269 oveq12d X 2 X 3 3 2 X 2 + 2 1 2 X = 2 X 3 - 2 3 2 X 2 + X
271 263 270 eqtrd X 2 X 3 - 3 2 X 2 + 1 2 X = 2 X 3 - 2 3 2 X 2 + X
272 271 oveq1d X 2 X 3 - 3 2 X 2 + 1 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 2 X 3 2 3 2 X 2 + X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6
273 191 257 mulcld X 2 3 2 X 2
274 223 273 subcld X 2 X 3 2 3 2 X 2
275 274 242 254 addassd X 2 X 3 2 3 2 X 2 + X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 2 X 3 2 3 2 X 2 + X + 1 5 + X 1 2 + 2 X 2 - X + 1 6
276 242 254 addcld X X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6
277 223 273 276 subsubd X 2 X 3 2 3 2 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 2 X 3 2 3 2 X 2 + X + 1 5 + X 1 2 + 2 X 2 - X + 1 6
278 191 256 224 mulassd X 2 3 2 X 2 = 2 3 2 X 2
279 58 87 204 divcan2i 2 3 2 = 3
280 279 oveq1i 2 3 2 X 2 = 3 X 2
281 278 280 eqtr3di X 2 3 2 X 2 = 3 X 2
282 281 oveq1d X 2 3 2 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 3 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6
283 242 246 253 add12d X X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 1 5 + X 1 2 + X + 2 X 2 - X + 1 6
284 191 247 251 adddid X 2 X 2 - X + 1 6 = 2 X 2 X + 2 1 6
285 191 224 242 subdid X 2 X 2 X = 2 X 2 2 X
286 187 oveq2i 2 3 2 = 2 6
287 58 184 reccli 1 3
288 58 87 287 mul32i 3 2 1 3 = 3 1 3 2
289 58 184 recidi 3 1 3 = 1
290 289 oveq1i 3 1 3 2 = 1 2
291 87 mulid2i 1 2 = 2
292 290 291 eqtri 3 1 3 2 = 2
293 288 292 eqtri 3 2 1 3 = 2
294 187 178 eqeltri 3 2
295 187 249 eqnetri 3 2 0
296 87 294 287 295 divmuli 2 3 2 = 1 3 3 2 1 3 = 2
297 293 296 mpbir 2 3 2 = 1 3
298 87 178 249 divreci 2 6 = 2 1 6
299 286 297 298 3eqtr3ri 2 1 6 = 1 3
300 299 a1i X 2 1 6 = 1 3
301 285 300 oveq12d X 2 X 2 X + 2 1 6 = 2 X 2 - 2 X + 1 3
302 284 301 eqtrd X 2 X 2 - X + 1 6 = 2 X 2 - 2 X + 1 3
303 302 oveq2d X X + 2 X 2 - X + 1 6 = X + 2 X 2 2 X + 1 3
304 191 224 mulcld X 2 X 2
305 191 242 mulcld X 2 X
306 304 305 subcld X 2 X 2 2 X
307 287 a1i X 1 3
308 242 306 307 addassd X X + 2 X 2 2 X + 1 3 = X + 2 X 2 2 X + 1 3
309 242 304 305 addsub12d X X + 2 X 2 - 2 X = 2 X 2 + X - 2 X
310 309 oveq1d X X + 2 X 2 2 X + 1 3 = 2 X 2 + X 2 X + 1 3
311 303 308 310 3eqtr2d X X + 2 X 2 - X + 1 6 = 2 X 2 + X 2 X + 1 3
312 311 oveq2d X 1 5 + X 1 2 + X + 2 X 2 - X + 1 6 = 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3
313 283 312 eqtrd X X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3
314 313 oveq2d X 3 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 3 X 2 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3
315 242 305 subcld X X 2 X
316 304 315 addcld X 2 X 2 + X - 2 X
317 241 245 316 307 add4d X 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3 = 1 5 + 2 X 2 + X - 2 X + X 1 2 + 1 3
318 241 304 315 add12d X 1 5 + 2 X 2 + X 2 X = 2 X 2 + 1 5 + X 2 X
319 318 oveq1d X 1 5 + 2 X 2 + X - 2 X + X 1 2 + 1 3 = 2 X 2 + 1 5 + X - 2 X + X 1 2 + 1 3
320 241 315 addcld X 1 5 + X - 2 X
321 245 307 addcld X X - 1 2 + 1 3
322 304 320 321 addassd X 2 X 2 + 1 5 + X - 2 X + X 1 2 + 1 3 = 2 X 2 + 1 5 + X - 2 X + X - 1 2 + 1 3
323 317 319 322 3eqtrd X 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3 = 2 X 2 + 1 5 + X - 2 X + X - 1 2 + 1 3
324 323 oveq2d X 3 X 2 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3 = 3 X 2 2 X 2 + 1 5 + X - 2 X + X - 1 2 + 1 3
325 183 224 mulcld X 3 X 2
326 320 321 addcld X 1 5 + X 2 X + X 1 2 + 1 3
327 325 304 326 subsub4d X 3 X 2 - 2 X 2 - 1 5 + X 2 X + X 1 2 + 1 3 = 3 X 2 2 X 2 + 1 5 + X - 2 X + X - 1 2 + 1 3
328 58 87 59 109 subaddrii 3 2 = 1
329 328 oveq1i 3 2 X 2 = 1 X 2
330 183 191 224 subdird X 3 2 X 2 = 3 X 2 2 X 2
331 224 mulid2d X 1 X 2 = X 2
332 329 330 331 3eqtr3a X 3 X 2 2 X 2 = X 2
333 241 305 242 subsubd X 1 5 2 X X = 1 5 - 2 X + X
334 2txmxeqx X 2 X X = X
335 334 oveq2d X 1 5 2 X X = 1 5 X
336 241 305 242 subadd23d X 1 5 - 2 X + X = 1 5 + X - 2 X
337 333 335 336 3eqtr3d X 1 5 X = 1 5 + X - 2 X
338 242 244 307 subsubd X X 1 2 1 3 = X - 1 2 + 1 3
339 337 338 oveq12d X 1 5 X + X - 1 2 1 3 = 1 5 + X 2 X + X 1 2 + 1 3
340 243 287 subcli 1 2 1 3
341 340 a1i X 1 2 1 3
342 241 242 341 npncand X 1 5 X + X - 1 2 1 3 = 1 5 1 2 1 3
343 halfthird 1 2 1 3 = 1 6
344 343 oveq2i 1 5 1 2 1 3 = 1 5 1 6
345 5recm6rec 1 5 1 6 = 1 30
346 344 345 eqtri 1 5 1 2 1 3 = 1 30
347 342 346 eqtrdi X 1 5 X + X - 1 2 1 3 = 1 30
348 339 347 eqtr3d X 1 5 + X 2 X + X 1 2 + 1 3 = 1 30
349 332 348 oveq12d X 3 X 2 - 2 X 2 - 1 5 + X 2 X + X 1 2 + 1 3 = X 2 1 30
350 324 327 349 3eqtr2d X 3 X 2 1 5 + X 1 2 + 2 X 2 + X - 2 X + 1 3 = X 2 1 30
351 282 314 350 3eqtrd X 2 3 2 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = X 2 1 30
352 351 oveq2d X 2 X 3 2 3 2 X 2 X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 2 X 3 X 2 1 30
353 275 277 352 3eqtr2d X 2 X 3 2 3 2 X 2 + X + 1 5 + X - 1 2 + 2 X 2 - X + 1 6 = 2 X 3 X 2 1 30
354 262 272 353 3eqtrd X 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X = 2 X 3 X 2 1 30
355 354 oveq2d X X 4 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X = X 4 2 X 3 X 2 1 30
356 220 223 subcld X X 4 2 X 3
357 356 224 238 addsubassd X X 4 2 X 3 + X 2 - 1 30 = X 4 2 X 3 + X 2 - 1 30
358 240 355 357 3eqtr4d X X 4 1 5 + X - 1 2 + 2 X 2 - X + 1 6 + 2 X 3 - 3 2 X 2 + 1 2 X = X 4 2 X 3 + X 2 - 1 30
359 3 218 358 3eqtrd X 4 BernPoly X = X 4 2 X 3 + X 2 - 1 30