Metamath Proof Explorer


Theorem bpolycl

Description: Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014) (Proof shortened by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion bpolycl N0XNBernPolyX

Proof

Step Hyp Ref Expression
1 oveq1 n=knBernPolyX=kBernPolyX
2 1 eleq1d n=knBernPolyXkBernPolyX
3 2 imbi2d n=kXnBernPolyXXkBernPolyX
4 oveq1 n=NnBernPolyX=NBernPolyX
5 4 eleq1d n=NnBernPolyXNBernPolyX
6 5 imbi2d n=NXnBernPolyXXNBernPolyX
7 r19.21v k0n1XkBernPolyXXk0n1kBernPolyX
8 bpolyval n0XnBernPolyX=Xnm=0n1(nm)mBernPolyXn-m+1
9 8 3adant3 n0Xk0n1kBernPolyXnBernPolyX=Xnm=0n1(nm)mBernPolyXn-m+1
10 simp2 n0Xk0n1kBernPolyXX
11 simp1 n0Xk0n1kBernPolyXn0
12 10 11 expcld n0Xk0n1kBernPolyXXn
13 fzfid n0Xk0n1kBernPolyX0n1Fin
14 elfzelz m0n1m
15 bccl n0m(nm)0
16 11 14 15 syl2an n0Xk0n1kBernPolyXm0n1(nm)0
17 16 nn0cnd n0Xk0n1kBernPolyXm0n1(nm)
18 oveq1 k=mkBernPolyX=mBernPolyX
19 18 eleq1d k=mkBernPolyXmBernPolyX
20 19 rspccva k0n1kBernPolyXm0n1mBernPolyX
21 20 3ad2antl3 n0Xk0n1kBernPolyXm0n1mBernPolyX
22 fzssp1 0n10n-1+1
23 11 nn0cnd n0Xk0n1kBernPolyXn
24 ax-1cn 1
25 npcan n1n-1+1=n
26 23 24 25 sylancl n0Xk0n1kBernPolyXn-1+1=n
27 26 oveq2d n0Xk0n1kBernPolyX0n-1+1=0n
28 22 27 sseqtrid n0Xk0n1kBernPolyX0n10n
29 28 sselda n0Xk0n1kBernPolyXm0n1m0n
30 fznn0sub m0nnm0
31 nn0p1nn nm0n-m+1
32 29 30 31 3syl n0Xk0n1kBernPolyXm0n1n-m+1
33 32 nncnd n0Xk0n1kBernPolyXm0n1n-m+1
34 32 nnne0d n0Xk0n1kBernPolyXm0n1n-m+10
35 21 33 34 divcld n0Xk0n1kBernPolyXm0n1mBernPolyXn-m+1
36 17 35 mulcld n0Xk0n1kBernPolyXm0n1(nm)mBernPolyXn-m+1
37 13 36 fsumcl n0Xk0n1kBernPolyXm=0n1(nm)mBernPolyXn-m+1
38 12 37 subcld n0Xk0n1kBernPolyXXnm=0n1(nm)mBernPolyXn-m+1
39 9 38 eqeltrd n0Xk0n1kBernPolyXnBernPolyX
40 39 3exp n0Xk0n1kBernPolyXnBernPolyX
41 40 a2d n0Xk0n1kBernPolyXXnBernPolyX
42 7 41 biimtrid n0k0n1XkBernPolyXXnBernPolyX
43 3 6 42 nn0sinds N0XNBernPolyX
44 43 imp N0XNBernPolyX