Metamath Proof Explorer


Theorem bpolydif

Description: Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014) (Proof shortened by Mario Carneiro, 26-May-2014)

Ref Expression
Assertion bpolydif N X N BernPoly X + 1 N BernPoly X = N X N 1

Proof

Step Hyp Ref Expression
1 oveq1 n = k n BernPoly X + 1 = k BernPoly X + 1
2 oveq1 n = k n BernPoly X = k BernPoly X
3 1 2 oveq12d n = k n BernPoly X + 1 n BernPoly X = k BernPoly X + 1 k BernPoly X
4 id n = k n = k
5 oveq1 n = k n 1 = k 1
6 5 oveq2d n = k X n 1 = X k 1
7 4 6 oveq12d n = k n X n 1 = k X k 1
8 3 7 eqeq12d n = k n BernPoly X + 1 n BernPoly X = n X n 1 k BernPoly X + 1 k BernPoly X = k X k 1
9 8 imbi2d n = k X n BernPoly X + 1 n BernPoly X = n X n 1 X k BernPoly X + 1 k BernPoly X = k X k 1
10 oveq1 n = N n BernPoly X + 1 = N BernPoly X + 1
11 oveq1 n = N n BernPoly X = N BernPoly X
12 10 11 oveq12d n = N n BernPoly X + 1 n BernPoly X = N BernPoly X + 1 N BernPoly X
13 id n = N n = N
14 oveq1 n = N n 1 = N 1
15 14 oveq2d n = N X n 1 = X N 1
16 13 15 oveq12d n = N n X n 1 = N X N 1
17 12 16 eqeq12d n = N n BernPoly X + 1 n BernPoly X = n X n 1 N BernPoly X + 1 N BernPoly X = N X N 1
18 17 imbi2d n = N X n BernPoly X + 1 n BernPoly X = n X n 1 X N BernPoly X + 1 N BernPoly X = N X N 1
19 simp1 n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X n
20 simp3 n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X X
21 simpl3 n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X m 1 n 1 X
22 oveq1 k = m k BernPoly X + 1 = m BernPoly X + 1
23 oveq1 k = m k BernPoly X = m BernPoly X
24 22 23 oveq12d k = m k BernPoly X + 1 k BernPoly X = m BernPoly X + 1 m BernPoly X
25 id k = m k = m
26 oveq1 k = m k 1 = m 1
27 26 oveq2d k = m X k 1 = X m 1
28 25 27 oveq12d k = m k X k 1 = m X m 1
29 24 28 eqeq12d k = m k BernPoly X + 1 k BernPoly X = k X k 1 m BernPoly X + 1 m BernPoly X = m X m 1
30 29 imbi2d k = m X k BernPoly X + 1 k BernPoly X = k X k 1 X m BernPoly X + 1 m BernPoly X = m X m 1
31 30 rspccva k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 m 1 n 1 X m BernPoly X + 1 m BernPoly X = m X m 1
32 31 3ad2antl2 n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X m 1 n 1 X m BernPoly X + 1 m BernPoly X = m X m 1
33 21 32 mpd n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X m 1 n 1 m BernPoly X + 1 m BernPoly X = m X m 1
34 19 20 33 bpolydiflem n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X n BernPoly X + 1 n BernPoly X = n X n 1
35 34 3exp n k 1 n 1 X k BernPoly X + 1 k BernPoly X = k X k 1 X n BernPoly X + 1 n BernPoly X = n X n 1
36 9 18 35 nnsinds N X N BernPoly X + 1 N BernPoly X = N X N 1
37 36 imp N X N BernPoly X + 1 N BernPoly X = N X N 1