Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq1 |
|
3 |
1 2
|
oveq12d |
|
4 |
|
id |
|
5 |
|
oveq1 |
|
6 |
5
|
oveq2d |
|
7 |
4 6
|
oveq12d |
|
8 |
3 7
|
eqeq12d |
|
9 |
8
|
imbi2d |
|
10 |
|
oveq1 |
|
11 |
|
oveq1 |
|
12 |
10 11
|
oveq12d |
|
13 |
|
id |
|
14 |
|
oveq1 |
|
15 |
14
|
oveq2d |
|
16 |
13 15
|
oveq12d |
|
17 |
12 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
simp1 |
|
20 |
|
simp3 |
|
21 |
|
simpl3 |
|
22 |
|
oveq1 |
|
23 |
|
oveq1 |
|
24 |
22 23
|
oveq12d |
|
25 |
|
id |
|
26 |
|
oveq1 |
|
27 |
26
|
oveq2d |
|
28 |
25 27
|
oveq12d |
|
29 |
24 28
|
eqeq12d |
|
30 |
29
|
imbi2d |
|
31 |
30
|
rspccva |
|
32 |
31
|
3ad2antl2 |
|
33 |
21 32
|
mpd |
|
34 |
19 20 33
|
bpolydiflem |
|
35 |
34
|
3exp |
|
36 |
9 18 35
|
nnsinds |
|
37 |
36
|
imp |
|