Step |
Hyp |
Ref |
Expression |
1 |
|
bpolydiflem.1 |
|
2 |
|
bpolydiflem.2 |
|
3 |
|
bpolydiflem.3 |
|
4 |
1
|
nnnn0d |
|
5 |
|
peano2cn |
|
6 |
2 5
|
syl |
|
7 |
|
bpolyval |
|
8 |
4 6 7
|
syl2anc |
|
9 |
|
bpolyval |
|
10 |
4 2 9
|
syl2anc |
|
11 |
8 10
|
oveq12d |
|
12 |
6 4
|
expcld |
|
13 |
|
fzfid |
|
14 |
|
elfzelz |
|
15 |
|
bccl |
|
16 |
4 14 15
|
syl2an |
|
17 |
16
|
nn0cnd |
|
18 |
|
elfznn0 |
|
19 |
|
bpolycl |
|
20 |
18 6 19
|
syl2anr |
|
21 |
|
fzssp1 |
|
22 |
1
|
nncnd |
|
23 |
|
ax-1cn |
|
24 |
|
npcan |
|
25 |
22 23 24
|
sylancl |
|
26 |
25
|
oveq2d |
|
27 |
21 26
|
sseqtrid |
|
28 |
27
|
sselda |
|
29 |
|
fznn0sub |
|
30 |
28 29
|
syl |
|
31 |
|
nn0p1nn |
|
32 |
30 31
|
syl |
|
33 |
32
|
nncnd |
|
34 |
32
|
nnne0d |
|
35 |
20 33 34
|
divcld |
|
36 |
17 35
|
mulcld |
|
37 |
13 36
|
fsumcl |
|
38 |
2 4
|
expcld |
|
39 |
|
bpolycl |
|
40 |
18 2 39
|
syl2anr |
|
41 |
40 33 34
|
divcld |
|
42 |
17 41
|
mulcld |
|
43 |
13 42
|
fsumcl |
|
44 |
12 37 38 43
|
sub4d |
|
45 |
27
|
sselda |
|
46 |
|
bccl2 |
|
47 |
46
|
adantl |
|
48 |
47
|
nncnd |
|
49 |
|
elfznn0 |
|
50 |
|
expcl |
|
51 |
2 49 50
|
syl2an |
|
52 |
48 51
|
mulcld |
|
53 |
45 52
|
syldan |
|
54 |
13 53
|
fsumcl |
|
55 |
|
addcom |
|
56 |
2 23 55
|
sylancl |
|
57 |
56
|
oveq1d |
|
58 |
|
binom1p |
|
59 |
2 4 58
|
syl2anc |
|
60 |
57 59
|
eqtrd |
|
61 |
|
nn0uz |
|
62 |
4 61
|
eleqtrdi |
|
63 |
|
oveq2 |
|
64 |
|
oveq2 |
|
65 |
63 64
|
oveq12d |
|
66 |
62 52 65
|
fsumm1 |
|
67 |
|
bcnn |
|
68 |
4 67
|
syl |
|
69 |
68
|
oveq1d |
|
70 |
38
|
mulid2d |
|
71 |
69 70
|
eqtrd |
|
72 |
71
|
oveq2d |
|
73 |
60 66 72
|
3eqtrd |
|
74 |
54 38 73
|
mvrraddd |
|
75 |
|
nnm1nn0 |
|
76 |
1 75
|
syl |
|
77 |
76 61
|
eleqtrdi |
|
78 |
|
oveq2 |
|
79 |
|
oveq2 |
|
80 |
78 79
|
oveq12d |
|
81 |
77 53 80
|
fsumm1 |
|
82 |
|
1cnd |
|
83 |
22 82 82
|
subsub4d |
|
84 |
|
df-2 |
|
85 |
84
|
oveq2i |
|
86 |
83 85
|
eqtr4di |
|
87 |
86
|
oveq2d |
|
88 |
87
|
sumeq1d |
|
89 |
|
bcnm1 |
|
90 |
4 89
|
syl |
|
91 |
90
|
oveq1d |
|
92 |
88 91
|
oveq12d |
|
93 |
74 81 92
|
3eqtrd |
|
94 |
|
oveq2 |
|
95 |
|
oveq1 |
|
96 |
|
oveq2 |
|
97 |
96
|
oveq1d |
|
98 |
95 97
|
oveq12d |
|
99 |
94 98
|
oveq12d |
|
100 |
77 36 99
|
fsum1p |
|
101 |
|
bpoly0 |
|
102 |
6 101
|
syl |
|
103 |
102
|
oveq1d |
|
104 |
103
|
oveq2d |
|
105 |
104
|
oveq1d |
|
106 |
100 105
|
eqtrd |
|
107 |
|
oveq1 |
|
108 |
107 97
|
oveq12d |
|
109 |
94 108
|
oveq12d |
|
110 |
77 42 109
|
fsum1p |
|
111 |
|
bpoly0 |
|
112 |
2 111
|
syl |
|
113 |
112
|
oveq1d |
|
114 |
113
|
oveq2d |
|
115 |
114
|
oveq1d |
|
116 |
110 115
|
eqtrd |
|
117 |
106 116
|
oveq12d |
|
118 |
|
0z |
|
119 |
|
bccl |
|
120 |
4 118 119
|
sylancl |
|
121 |
120
|
nn0cnd |
|
122 |
22
|
subid1d |
|
123 |
122 1
|
eqeltrd |
|
124 |
123
|
peano2nnd |
|
125 |
124
|
nnrecred |
|
126 |
125
|
recnd |
|
127 |
121 126
|
mulcld |
|
128 |
|
fzfid |
|
129 |
|
fzp1ss |
|
130 |
118 129
|
ax-mp |
|
131 |
130
|
sseli |
|
132 |
131 36
|
sylan2 |
|
133 |
128 132
|
fsumcl |
|
134 |
131 42
|
sylan2 |
|
135 |
128 134
|
fsumcl |
|
136 |
127 133 135
|
pnpcand |
|
137 |
|
1zzd |
|
138 |
|
0zd |
|
139 |
1
|
nnzd |
|
140 |
|
2z |
|
141 |
|
zsubcl |
|
142 |
139 140 141
|
sylancl |
|
143 |
|
fzssp1 |
|
144 |
|
2cnd |
|
145 |
22 144 82
|
subsubd |
|
146 |
|
2m1e1 |
|
147 |
146
|
oveq2i |
|
148 |
145 147
|
eqtr3di |
|
149 |
148
|
oveq2d |
|
150 |
143 149
|
sseqtrid |
|
151 |
150
|
sselda |
|
152 |
151 53
|
syldan |
|
153 |
|
oveq2 |
|
154 |
|
oveq2 |
|
155 |
153 154
|
oveq12d |
|
156 |
137 138 142 152 155
|
fsumshft |
|
157 |
148
|
oveq2d |
|
158 |
157
|
sumeq1d |
|
159 |
156 158
|
eqtrd |
|
160 |
|
0p1e1 |
|
161 |
160
|
oveq1i |
|
162 |
161
|
eleq2i |
|
163 |
|
fzssp1 |
|
164 |
25
|
oveq2d |
|
165 |
163 164
|
sseqtrid |
|
166 |
165
|
sselda |
|
167 |
|
bcm1k |
|
168 |
166 167
|
syl |
|
169 |
1
|
adantr |
|
170 |
169
|
nncnd |
|
171 |
|
elfznn |
|
172 |
171
|
adantl |
|
173 |
172
|
nncnd |
|
174 |
|
1cnd |
|
175 |
170 173 174
|
subsubd |
|
176 |
175
|
oveq1d |
|
177 |
176
|
oveq2d |
|
178 |
168 177
|
eqtrd |
|
179 |
3
|
oveq1d |
|
180 |
162 131
|
sylbir |
|
181 |
180 20
|
sylan2 |
|
182 |
180 40
|
sylan2 |
|
183 |
180 33
|
sylan2 |
|
184 |
180 34
|
sylan2 |
|
185 |
181 182 183 184
|
divsubdird |
|
186 |
2
|
adantr |
|
187 |
|
nnm1nn0 |
|
188 |
172 187
|
syl |
|
189 |
186 188
|
expcld |
|
190 |
173 189 183 184
|
div23d |
|
191 |
179 185 190
|
3eqtr3d |
|
192 |
178 191
|
oveq12d |
|
193 |
180 17
|
sylan2 |
|
194 |
181 183 184
|
divcld |
|
195 |
182 183 184
|
divcld |
|
196 |
193 194 195
|
subdid |
|
197 |
169
|
nnnn0d |
|
198 |
188
|
nn0zd |
|
199 |
|
bccl |
|
200 |
197 198 199
|
syl2anc |
|
201 |
200
|
nn0cnd |
|
202 |
172
|
nnne0d |
|
203 |
183 173 202
|
divcld |
|
204 |
173 183 184
|
divcld |
|
205 |
204 189
|
mulcld |
|
206 |
201 203 205
|
mulassd |
|
207 |
183 173 184 202
|
divcan6d |
|
208 |
207
|
oveq1d |
|
209 |
203 204 189
|
mulassd |
|
210 |
189
|
mulid2d |
|
211 |
208 209 210
|
3eqtr3d |
|
212 |
211
|
oveq2d |
|
213 |
206 212
|
eqtrd |
|
214 |
192 196 213
|
3eqtr3d |
|
215 |
162 214
|
sylan2b |
|
216 |
215
|
sumeq2dv |
|
217 |
128 132 134
|
fsumsub |
|
218 |
159 216 217
|
3eqtr2rd |
|
219 |
117 136 218
|
3eqtrd |
|
220 |
93 219
|
oveq12d |
|
221 |
|
fzfid |
|
222 |
221 152
|
fsumcl |
|
223 |
2 76
|
expcld |
|
224 |
22 223
|
mulcld |
|
225 |
222 224
|
pncan2d |
|
226 |
220 225
|
eqtrd |
|
227 |
11 44 226
|
3eqtrd |
|