Metamath Proof Explorer


Theorem bpolydiflem

Description: Lemma for bpolydif . (Contributed by Scott Fenton, 12-Jun-2014)

Ref Expression
Hypotheses bpolydiflem.1 φ N
bpolydiflem.2 φ X
bpolydiflem.3 φ k 1 N 1 k BernPoly X + 1 k BernPoly X = k X k 1
Assertion bpolydiflem φ N BernPoly X + 1 N BernPoly X = N X N 1

Proof

Step Hyp Ref Expression
1 bpolydiflem.1 φ N
2 bpolydiflem.2 φ X
3 bpolydiflem.3 φ k 1 N 1 k BernPoly X + 1 k BernPoly X = k X k 1
4 1 nnnn0d φ N 0
5 peano2cn X X + 1
6 2 5 syl φ X + 1
7 bpolyval N 0 X + 1 N BernPoly X + 1 = X + 1 N k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1
8 4 6 7 syl2anc φ N BernPoly X + 1 = X + 1 N k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1
9 bpolyval N 0 X N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
10 4 2 9 syl2anc φ N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
11 8 10 oveq12d φ N BernPoly X + 1 N BernPoly X = X + 1 N - k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 - X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
12 6 4 expcld φ X + 1 N
13 fzfid φ 0 N 1 Fin
14 elfzelz k 0 N 1 k
15 bccl N 0 k ( N k) 0
16 4 14 15 syl2an φ k 0 N 1 ( N k) 0
17 16 nn0cnd φ k 0 N 1 ( N k)
18 elfznn0 k 0 N 1 k 0
19 bpolycl k 0 X + 1 k BernPoly X + 1
20 18 6 19 syl2anr φ k 0 N 1 k BernPoly X + 1
21 fzssp1 0 N 1 0 N - 1 + 1
22 1 nncnd φ N
23 ax-1cn 1
24 npcan N 1 N - 1 + 1 = N
25 22 23 24 sylancl φ N - 1 + 1 = N
26 25 oveq2d φ 0 N - 1 + 1 = 0 N
27 21 26 sseqtrid φ 0 N 1 0 N
28 27 sselda φ k 0 N 1 k 0 N
29 fznn0sub k 0 N N k 0
30 28 29 syl φ k 0 N 1 N k 0
31 nn0p1nn N k 0 N - k + 1
32 30 31 syl φ k 0 N 1 N - k + 1
33 32 nncnd φ k 0 N 1 N - k + 1
34 32 nnne0d φ k 0 N 1 N - k + 1 0
35 20 33 34 divcld φ k 0 N 1 k BernPoly X + 1 N - k + 1
36 17 35 mulcld φ k 0 N 1 ( N k) k BernPoly X + 1 N - k + 1
37 13 36 fsumcl φ k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1
38 2 4 expcld φ X N
39 bpolycl k 0 X k BernPoly X
40 18 2 39 syl2anr φ k 0 N 1 k BernPoly X
41 40 33 34 divcld φ k 0 N 1 k BernPoly X N - k + 1
42 17 41 mulcld φ k 0 N 1 ( N k) k BernPoly X N - k + 1
43 13 42 fsumcl φ k = 0 N 1 ( N k) k BernPoly X N - k + 1
44 12 37 38 43 sub4d φ X + 1 N - k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 - X N k = 0 N 1 ( N k) k BernPoly X N - k + 1 = X + 1 N - X N - k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 N 1 ( N k) k BernPoly X N - k + 1
45 27 sselda φ m 0 N 1 m 0 N
46 bccl2 m 0 N ( N m)
47 46 adantl φ m 0 N ( N m)
48 47 nncnd φ m 0 N ( N m)
49 elfznn0 m 0 N m 0
50 expcl X m 0 X m
51 2 49 50 syl2an φ m 0 N X m
52 48 51 mulcld φ m 0 N ( N m) X m
53 45 52 syldan φ m 0 N 1 ( N m) X m
54 13 53 fsumcl φ m = 0 N 1 ( N m) X m
55 addcom X 1 X + 1 = 1 + X
56 2 23 55 sylancl φ X + 1 = 1 + X
57 56 oveq1d φ X + 1 N = 1 + X N
58 binom1p X N 0 1 + X N = m = 0 N ( N m) X m
59 2 4 58 syl2anc φ 1 + X N = m = 0 N ( N m) X m
60 57 59 eqtrd φ X + 1 N = m = 0 N ( N m) X m
61 nn0uz 0 = 0
62 4 61 eleqtrdi φ N 0
63 oveq2 m = N ( N m) = ( N N)
64 oveq2 m = N X m = X N
65 63 64 oveq12d m = N ( N m) X m = ( N N) X N
66 62 52 65 fsumm1 φ m = 0 N ( N m) X m = m = 0 N 1 ( N m) X m + ( N N) X N
67 bcnn N 0 ( N N) = 1
68 4 67 syl φ ( N N) = 1
69 68 oveq1d φ ( N N) X N = 1 X N
70 38 mulid2d φ 1 X N = X N
71 69 70 eqtrd φ ( N N) X N = X N
72 71 oveq2d φ m = 0 N 1 ( N m) X m + ( N N) X N = m = 0 N 1 ( N m) X m + X N
73 60 66 72 3eqtrd φ X + 1 N = m = 0 N 1 ( N m) X m + X N
74 54 38 73 mvrraddd φ X + 1 N X N = m = 0 N 1 ( N m) X m
75 nnm1nn0 N N 1 0
76 1 75 syl φ N 1 0
77 76 61 eleqtrdi φ N 1 0
78 oveq2 m = N 1 ( N m) = ( N N 1 )
79 oveq2 m = N 1 X m = X N 1
80 78 79 oveq12d m = N 1 ( N m) X m = ( N N 1 ) X N 1
81 77 53 80 fsumm1 φ m = 0 N 1 ( N m) X m = m = 0 N - 1 - 1 ( N m) X m + ( N N 1 ) X N 1
82 1cnd φ 1
83 22 82 82 subsub4d φ N - 1 - 1 = N 1 + 1
84 df-2 2 = 1 + 1
85 84 oveq2i N 2 = N 1 + 1
86 83 85 eqtr4di φ N - 1 - 1 = N 2
87 86 oveq2d φ 0 N - 1 - 1 = 0 N 2
88 87 sumeq1d φ m = 0 N - 1 - 1 ( N m) X m = m = 0 N 2 ( N m) X m
89 bcnm1 N 0 ( N N 1 ) = N
90 4 89 syl φ ( N N 1 ) = N
91 90 oveq1d φ ( N N 1 ) X N 1 = N X N 1
92 88 91 oveq12d φ m = 0 N - 1 - 1 ( N m) X m + ( N N 1 ) X N 1 = m = 0 N 2 ( N m) X m + N X N 1
93 74 81 92 3eqtrd φ X + 1 N X N = m = 0 N 2 ( N m) X m + N X N 1
94 oveq2 k = 0 ( N k) = ( N 0 )
95 oveq1 k = 0 k BernPoly X + 1 = 0 BernPoly X + 1
96 oveq2 k = 0 N k = N 0
97 96 oveq1d k = 0 N - k + 1 = N - 0 + 1
98 95 97 oveq12d k = 0 k BernPoly X + 1 N - k + 1 = 0 BernPoly X + 1 N - 0 + 1
99 94 98 oveq12d k = 0 ( N k) k BernPoly X + 1 N - k + 1 = ( N 0 ) 0 BernPoly X + 1 N - 0 + 1
100 77 36 99 fsum1p φ k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 = ( N 0 ) 0 BernPoly X + 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1
101 bpoly0 X + 1 0 BernPoly X + 1 = 1
102 6 101 syl φ 0 BernPoly X + 1 = 1
103 102 oveq1d φ 0 BernPoly X + 1 N - 0 + 1 = 1 N - 0 + 1
104 103 oveq2d φ ( N 0 ) 0 BernPoly X + 1 N - 0 + 1 = ( N 0 ) 1 N - 0 + 1
105 104 oveq1d φ ( N 0 ) 0 BernPoly X + 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 = ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1
106 100 105 eqtrd φ k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 = ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1
107 oveq1 k = 0 k BernPoly X = 0 BernPoly X
108 107 97 oveq12d k = 0 k BernPoly X N - k + 1 = 0 BernPoly X N - 0 + 1
109 94 108 oveq12d k = 0 ( N k) k BernPoly X N - k + 1 = ( N 0 ) 0 BernPoly X N - 0 + 1
110 77 42 109 fsum1p φ k = 0 N 1 ( N k) k BernPoly X N - k + 1 = ( N 0 ) 0 BernPoly X N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
111 bpoly0 X 0 BernPoly X = 1
112 2 111 syl φ 0 BernPoly X = 1
113 112 oveq1d φ 0 BernPoly X N - 0 + 1 = 1 N - 0 + 1
114 113 oveq2d φ ( N 0 ) 0 BernPoly X N - 0 + 1 = ( N 0 ) 1 N - 0 + 1
115 114 oveq1d φ ( N 0 ) 0 BernPoly X N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1 = ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
116 110 115 eqtrd φ k = 0 N 1 ( N k) k BernPoly X N - k + 1 = ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
117 106 116 oveq12d φ k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 N 1 ( N k) k BernPoly X N - k + 1 = ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 - ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
118 0z 0
119 bccl N 0 0 ( N 0 ) 0
120 4 118 119 sylancl φ ( N 0 ) 0
121 120 nn0cnd φ ( N 0 )
122 22 subid1d φ N 0 = N
123 122 1 eqeltrd φ N 0
124 123 peano2nnd φ N - 0 + 1
125 124 nnrecred φ 1 N - 0 + 1
126 125 recnd φ 1 N - 0 + 1
127 121 126 mulcld φ ( N 0 ) 1 N - 0 + 1
128 fzfid φ 0 + 1 N 1 Fin
129 fzp1ss 0 0 + 1 N 1 0 N 1
130 118 129 ax-mp 0 + 1 N 1 0 N 1
131 130 sseli k 0 + 1 N 1 k 0 N 1
132 131 36 sylan2 φ k 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1
133 128 132 fsumcl φ k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1
134 131 42 sylan2 φ k 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
135 128 134 fsumcl φ k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
136 127 133 135 pnpcand φ ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 - ( N 0 ) 1 N - 0 + 1 + k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1 = k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
137 1zzd φ 1
138 0zd φ 0
139 1 nnzd φ N
140 2z 2
141 zsubcl N 2 N 2
142 139 140 141 sylancl φ N 2
143 fzssp1 0 N 2 0 N - 2 + 1
144 2cnd φ 2
145 22 144 82 subsubd φ N 2 1 = N - 2 + 1
146 2m1e1 2 1 = 1
147 146 oveq2i N 2 1 = N 1
148 145 147 eqtr3di φ N - 2 + 1 = N 1
149 148 oveq2d φ 0 N - 2 + 1 = 0 N 1
150 143 149 sseqtrid φ 0 N 2 0 N 1
151 150 sselda φ m 0 N 2 m 0 N 1
152 151 53 syldan φ m 0 N 2 ( N m) X m
153 oveq2 m = k 1 ( N m) = ( N k 1 )
154 oveq2 m = k 1 X m = X k 1
155 153 154 oveq12d m = k 1 ( N m) X m = ( N k 1 ) X k 1
156 137 138 142 152 155 fsumshft φ m = 0 N 2 ( N m) X m = k = 0 + 1 N - 2 + 1 ( N k 1 ) X k 1
157 148 oveq2d φ 0 + 1 N - 2 + 1 = 0 + 1 N 1
158 157 sumeq1d φ k = 0 + 1 N - 2 + 1 ( N k 1 ) X k 1 = k = 0 + 1 N 1 ( N k 1 ) X k 1
159 156 158 eqtrd φ m = 0 N 2 ( N m) X m = k = 0 + 1 N 1 ( N k 1 ) X k 1
160 0p1e1 0 + 1 = 1
161 160 oveq1i 0 + 1 N 1 = 1 N 1
162 161 eleq2i k 0 + 1 N 1 k 1 N 1
163 fzssp1 1 N 1 1 N - 1 + 1
164 25 oveq2d φ 1 N - 1 + 1 = 1 N
165 163 164 sseqtrid φ 1 N 1 1 N
166 165 sselda φ k 1 N 1 k 1 N
167 bcm1k k 1 N ( N k) = ( N k 1 ) N k 1 k
168 166 167 syl φ k 1 N 1 ( N k) = ( N k 1 ) N k 1 k
169 1 adantr φ k 1 N 1 N
170 169 nncnd φ k 1 N 1 N
171 elfznn k 1 N 1 k
172 171 adantl φ k 1 N 1 k
173 172 nncnd φ k 1 N 1 k
174 1cnd φ k 1 N 1 1
175 170 173 174 subsubd φ k 1 N 1 N k 1 = N - k + 1
176 175 oveq1d φ k 1 N 1 N k 1 k = N - k + 1 k
177 176 oveq2d φ k 1 N 1 ( N k 1 ) N k 1 k = ( N k 1 ) N - k + 1 k
178 168 177 eqtrd φ k 1 N 1 ( N k) = ( N k 1 ) N - k + 1 k
179 3 oveq1d φ k 1 N 1 k BernPoly X + 1 k BernPoly X N - k + 1 = k X k 1 N - k + 1
180 162 131 sylbir k 1 N 1 k 0 N 1
181 180 20 sylan2 φ k 1 N 1 k BernPoly X + 1
182 180 40 sylan2 φ k 1 N 1 k BernPoly X
183 180 33 sylan2 φ k 1 N 1 N - k + 1
184 180 34 sylan2 φ k 1 N 1 N - k + 1 0
185 181 182 183 184 divsubdird φ k 1 N 1 k BernPoly X + 1 k BernPoly X N - k + 1 = k BernPoly X + 1 N - k + 1 k BernPoly X N - k + 1
186 2 adantr φ k 1 N 1 X
187 nnm1nn0 k k 1 0
188 172 187 syl φ k 1 N 1 k 1 0
189 186 188 expcld φ k 1 N 1 X k 1
190 173 189 183 184 div23d φ k 1 N 1 k X k 1 N - k + 1 = k N - k + 1 X k 1
191 179 185 190 3eqtr3d φ k 1 N 1 k BernPoly X + 1 N - k + 1 k BernPoly X N - k + 1 = k N - k + 1 X k 1
192 178 191 oveq12d φ k 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 k BernPoly X N - k + 1 = ( N k 1 ) N - k + 1 k k N - k + 1 X k 1
193 180 17 sylan2 φ k 1 N 1 ( N k)
194 181 183 184 divcld φ k 1 N 1 k BernPoly X + 1 N - k + 1
195 182 183 184 divcld φ k 1 N 1 k BernPoly X N - k + 1
196 193 194 195 subdid φ k 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 k BernPoly X N - k + 1 = ( N k) k BernPoly X + 1 N - k + 1 ( N k) k BernPoly X N - k + 1
197 169 nnnn0d φ k 1 N 1 N 0
198 188 nn0zd φ k 1 N 1 k 1
199 bccl N 0 k 1 ( N k 1 ) 0
200 197 198 199 syl2anc φ k 1 N 1 ( N k 1 ) 0
201 200 nn0cnd φ k 1 N 1 ( N k 1 )
202 172 nnne0d φ k 1 N 1 k 0
203 183 173 202 divcld φ k 1 N 1 N - k + 1 k
204 173 183 184 divcld φ k 1 N 1 k N - k + 1
205 204 189 mulcld φ k 1 N 1 k N - k + 1 X k 1
206 201 203 205 mulassd φ k 1 N 1 ( N k 1 ) N - k + 1 k k N - k + 1 X k 1 = ( N k 1 ) N - k + 1 k k N - k + 1 X k 1
207 183 173 184 202 divcan6d φ k 1 N 1 N - k + 1 k k N - k + 1 = 1
208 207 oveq1d φ k 1 N 1 N - k + 1 k k N - k + 1 X k 1 = 1 X k 1
209 203 204 189 mulassd φ k 1 N 1 N - k + 1 k k N - k + 1 X k 1 = N - k + 1 k k N - k + 1 X k 1
210 189 mulid2d φ k 1 N 1 1 X k 1 = X k 1
211 208 209 210 3eqtr3d φ k 1 N 1 N - k + 1 k k N - k + 1 X k 1 = X k 1
212 211 oveq2d φ k 1 N 1 ( N k 1 ) N - k + 1 k k N - k + 1 X k 1 = ( N k 1 ) X k 1
213 206 212 eqtrd φ k 1 N 1 ( N k 1 ) N - k + 1 k k N - k + 1 X k 1 = ( N k 1 ) X k 1
214 192 196 213 3eqtr3d φ k 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 ( N k) k BernPoly X N - k + 1 = ( N k 1 ) X k 1
215 162 214 sylan2b φ k 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 ( N k) k BernPoly X N - k + 1 = ( N k 1 ) X k 1
216 215 sumeq2dv φ k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 ( N k) k BernPoly X N - k + 1 = k = 0 + 1 N 1 ( N k 1 ) X k 1
217 128 132 134 fsumsub φ k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 ( N k) k BernPoly X N - k + 1 = k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1
218 159 216 217 3eqtr2rd φ k = 0 + 1 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 + 1 N 1 ( N k) k BernPoly X N - k + 1 = m = 0 N 2 ( N m) X m
219 117 136 218 3eqtrd φ k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 N 1 ( N k) k BernPoly X N - k + 1 = m = 0 N 2 ( N m) X m
220 93 219 oveq12d φ X + 1 N - X N - k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 N 1 ( N k) k BernPoly X N - k + 1 = m = 0 N 2 ( N m) X m + N X N 1 - m = 0 N 2 ( N m) X m
221 fzfid φ 0 N 2 Fin
222 221 152 fsumcl φ m = 0 N 2 ( N m) X m
223 2 76 expcld φ X N 1
224 22 223 mulcld φ N X N 1
225 222 224 pncan2d φ m = 0 N 2 ( N m) X m + N X N 1 - m = 0 N 2 ( N m) X m = N X N 1
226 220 225 eqtrd φ X + 1 N - X N - k = 0 N 1 ( N k) k BernPoly X + 1 N - k + 1 k = 0 N 1 ( N k) k BernPoly X N - k + 1 = N X N 1
227 11 44 226 3eqtrd φ N BernPoly X + 1 N BernPoly X = N X N 1