Metamath Proof Explorer


Theorem bpolylem

Description: Lemma for bpolyval . (Contributed by Scott Fenton, 22-May-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses bpoly.1 G = g V dom g / n X n k dom g ( n k) g k n - k + 1
bpoly.2 F = wrecs < 0 G
Assertion bpolylem N 0 X N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1

Proof

Step Hyp Ref Expression
1 bpoly.1 G = g V dom g / n X n k dom g ( n k) g k n - k + 1
2 bpoly.2 F = wrecs < 0 G
3 oveq1 x = X x n = X n
4 3 oveq1d x = X x n k dom g ( n k) g k n - k + 1 = X n k dom g ( n k) g k n - k + 1
5 4 csbeq2dv x = X dom g / n x n k dom g ( n k) g k n - k + 1 = dom g / n X n k dom g ( n k) g k n - k + 1
6 5 mpteq2dv x = X g V dom g / n x n k dom g ( n k) g k n - k + 1 = g V dom g / n X n k dom g ( n k) g k n - k + 1
7 6 1 eqtr4di x = X g V dom g / n x n k dom g ( n k) g k n - k + 1 = G
8 wrecseq3 g V dom g / n x n k dom g ( n k) g k n - k + 1 = G wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 = wrecs < 0 G
9 7 8 syl x = X wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 = wrecs < 0 G
10 9 2 eqtr4di x = X wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 = F
11 10 fveq1d x = X wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 m = F m
12 fveq2 m = N F m = F N
13 11 12 sylan9eqr m = N x = X wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 m = F N
14 df-bpoly BernPoly = m 0 , x wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 m
15 fvex F N V
16 13 14 15 ovmpoa N 0 X N BernPoly X = F N
17 ltweuz < We 0
18 nn0uz 0 = 0
19 weeq2 0 = 0 < We 0 < We 0
20 18 19 ax-mp < We 0 < We 0
21 17 20 mpbir < We 0
22 nn0ex 0 V
23 exse 0 V < Se 0
24 22 23 ax-mp < Se 0
25 2 wfr2 < We 0 < Se 0 N 0 F N = G F Pred < 0 N
26 21 24 25 mpanl12 N 0 F N = G F Pred < 0 N
27 26 adantr N 0 X F N = G F Pred < 0 N
28 prednn0 N 0 Pred < 0 N = 0 N 1
29 28 adantr N 0 X Pred < 0 N = 0 N 1
30 29 reseq2d N 0 X F Pred < 0 N = F 0 N 1
31 30 fveq2d N 0 X G F Pred < 0 N = G F 0 N 1
32 2 wfrfun < We 0 < Se 0 Fun F
33 21 24 32 mp2an Fun F
34 ovex 0 N 1 V
35 resfunexg Fun F 0 N 1 V F 0 N 1 V
36 33 34 35 mp2an F 0 N 1 V
37 dmeq g = F 0 N 1 dom g = dom F 0 N 1
38 2 wfr1 < We 0 < Se 0 F Fn 0
39 21 24 38 mp2an F Fn 0
40 fz0ssnn0 0 N 1 0
41 fnssres F Fn 0 0 N 1 0 F 0 N 1 Fn 0 N 1
42 39 40 41 mp2an F 0 N 1 Fn 0 N 1
43 42 fndmi dom F 0 N 1 = 0 N 1
44 37 43 eqtrdi g = F 0 N 1 dom g = 0 N 1
45 44 fveq2d g = F 0 N 1 dom g = 0 N 1
46 fveq1 g = F 0 N 1 g k = F 0 N 1 k
47 fvres k 0 N 1 F 0 N 1 k = F k
48 46 47 sylan9eq g = F 0 N 1 k 0 N 1 g k = F k
49 48 oveq1d g = F 0 N 1 k 0 N 1 g k n - k + 1 = F k n - k + 1
50 49 oveq2d g = F 0 N 1 k 0 N 1 ( n k) g k n - k + 1 = ( n k) F k n - k + 1
51 44 50 sumeq12rdv g = F 0 N 1 k dom g ( n k) g k n - k + 1 = k = 0 N 1 ( n k) F k n - k + 1
52 51 oveq2d g = F 0 N 1 X n k dom g ( n k) g k n - k + 1 = X n k = 0 N 1 ( n k) F k n - k + 1
53 45 52 csbeq12dv g = F 0 N 1 dom g / n X n k dom g ( n k) g k n - k + 1 = 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1
54 ovex X n k = 0 N 1 ( n k) F k n - k + 1 V
55 54 csbex 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1 V
56 53 1 55 fvmpt F 0 N 1 V G F 0 N 1 = 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1
57 36 56 ax-mp G F 0 N 1 = 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1
58 nfcvd N 0 _ n X N k = 0 N 1 ( N k) F k N - k + 1
59 oveq2 n = N X n = X N
60 oveq1 n = N ( n k) = ( N k)
61 oveq1 n = N n k = N k
62 61 oveq1d n = N n - k + 1 = N - k + 1
63 62 oveq2d n = N F k n - k + 1 = F k N - k + 1
64 60 63 oveq12d n = N ( n k) F k n - k + 1 = ( N k) F k N - k + 1
65 64 sumeq2sdv n = N k = 0 N 1 ( n k) F k n - k + 1 = k = 0 N 1 ( N k) F k N - k + 1
66 59 65 oveq12d n = N X n k = 0 N 1 ( n k) F k n - k + 1 = X N k = 0 N 1 ( N k) F k N - k + 1
67 58 66 csbiegf N 0 N / n X n k = 0 N 1 ( n k) F k n - k + 1 = X N k = 0 N 1 ( N k) F k N - k + 1
68 67 adantr N 0 X N / n X n k = 0 N 1 ( n k) F k n - k + 1 = X N k = 0 N 1 ( N k) F k N - k + 1
69 nn0z N 0 N
70 fz01en N 0 N 1 1 N
71 69 70 syl N 0 0 N 1 1 N
72 fzfi 0 N 1 Fin
73 fzfi 1 N Fin
74 hashen 0 N 1 Fin 1 N Fin 0 N 1 = 1 N 0 N 1 1 N
75 72 73 74 mp2an 0 N 1 = 1 N 0 N 1 1 N
76 71 75 sylibr N 0 0 N 1 = 1 N
77 hashfz1 N 0 1 N = N
78 76 77 eqtrd N 0 0 N 1 = N
79 78 adantr N 0 X 0 N 1 = N
80 79 csbeq1d N 0 X 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1 = N / n X n k = 0 N 1 ( n k) F k n - k + 1
81 elfznn0 k 0 N 1 k 0
82 simpr N 0 X X
83 fveq2 m = k F m = F k
84 11 83 sylan9eqr m = k x = X wrecs < 0 g V dom g / n x n k dom g ( n k) g k n - k + 1 m = F k
85 fvex F k V
86 84 14 85 ovmpoa k 0 X k BernPoly X = F k
87 81 82 86 syl2anr N 0 X k 0 N 1 k BernPoly X = F k
88 87 oveq1d N 0 X k 0 N 1 k BernPoly X N - k + 1 = F k N - k + 1
89 88 oveq2d N 0 X k 0 N 1 ( N k) k BernPoly X N - k + 1 = ( N k) F k N - k + 1
90 89 sumeq2dv N 0 X k = 0 N 1 ( N k) k BernPoly X N - k + 1 = k = 0 N 1 ( N k) F k N - k + 1
91 90 oveq2d N 0 X X N k = 0 N 1 ( N k) k BernPoly X N - k + 1 = X N k = 0 N 1 ( N k) F k N - k + 1
92 68 80 91 3eqtr4d N 0 X 0 N 1 / n X n k = 0 N 1 ( n k) F k n - k + 1 = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
93 57 92 eqtrid N 0 X G F 0 N 1 = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
94 31 93 eqtrd N 0 X G F Pred < 0 N = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1
95 16 27 94 3eqtrd N 0 X N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1