Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
nn0uz |
|
3 |
1 2
|
eleqtrdi |
|
4 |
|
elfzelz |
|
5 |
|
bccl |
|
6 |
1 4 5
|
syl2an |
|
7 |
6
|
nn0cnd |
|
8 |
|
elfznn0 |
|
9 |
|
simpr |
|
10 |
|
bpolycl |
|
11 |
8 9 10
|
syl2anr |
|
12 |
|
fznn0sub |
|
13 |
12
|
adantl |
|
14 |
|
nn0p1nn |
|
15 |
13 14
|
syl |
|
16 |
15
|
nncnd |
|
17 |
15
|
nnne0d |
|
18 |
11 16 17
|
divcld |
|
19 |
7 18
|
mulcld |
|
20 |
|
oveq2 |
|
21 |
|
oveq1 |
|
22 |
|
oveq2 |
|
23 |
22
|
oveq1d |
|
24 |
21 23
|
oveq12d |
|
25 |
20 24
|
oveq12d |
|
26 |
3 19 25
|
fsumm1 |
|
27 |
|
bcnn |
|
28 |
27
|
adantr |
|
29 |
|
nn0cn |
|
30 |
29
|
adantr |
|
31 |
30
|
subidd |
|
32 |
31
|
oveq1d |
|
33 |
|
0p1e1 |
|
34 |
32 33
|
eqtrdi |
|
35 |
34
|
oveq2d |
|
36 |
|
bpolycl |
|
37 |
36
|
div1d |
|
38 |
35 37
|
eqtrd |
|
39 |
28 38
|
oveq12d |
|
40 |
36
|
mulid2d |
|
41 |
39 40
|
eqtrd |
|
42 |
41
|
oveq2d |
|
43 |
|
bpolyval |
|
44 |
43
|
eqcomd |
|
45 |
|
expcl |
|
46 |
45
|
ancoms |
|
47 |
|
fzfid |
|
48 |
|
fzssp1 |
|
49 |
|
ax-1cn |
|
50 |
|
npcan |
|
51 |
30 49 50
|
sylancl |
|
52 |
51
|
oveq2d |
|
53 |
48 52
|
sseqtrid |
|
54 |
53
|
sselda |
|
55 |
54 19
|
syldan |
|
56 |
47 55
|
fsumcl |
|
57 |
46 56 36
|
subaddd |
|
58 |
44 57
|
mpbid |
|
59 |
26 42 58
|
3eqtrd |
|