Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|
2 |
|
oveq2 |
|
3 |
|
oveq1 |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
oveq2d |
|
7 |
3 6
|
oveq12d |
|
8 |
7
|
sumeq2sdv |
|
9 |
2 8
|
oveq12d |
|
10 |
1 9
|
csbie |
|
11 |
|
oveq2 |
|
12 |
|
fveq2 |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq1d |
|
15 |
12 14
|
oveq12d |
|
16 |
11 15
|
oveq12d |
|
17 |
16
|
cbvsumv |
|
18 |
|
dmeq |
|
19 |
|
fveq1 |
|
20 |
19
|
oveq1d |
|
21 |
20
|
oveq2d |
|
22 |
21
|
adantr |
|
23 |
18 22
|
sumeq12dv |
|
24 |
17 23
|
eqtrid |
|
25 |
24
|
oveq2d |
|
26 |
25
|
csbeq2dv |
|
27 |
10 26
|
eqtr3id |
|
28 |
18
|
fveq2d |
|
29 |
28
|
csbeq1d |
|
30 |
27 29
|
eqtrd |
|
31 |
30
|
cbvmptv |
|
32 |
|
eqid |
|
33 |
31 32
|
bpolylem |
|