Metamath Proof Explorer


Theorem bpolyval

Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpolyval N 0 X N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1

Proof

Step Hyp Ref Expression
1 fvex dom c V
2 oveq2 n = dom c X n = X dom c
3 oveq1 n = dom c ( n m) = ( dom c m)
4 oveq1 n = dom c n m = dom c m
5 4 oveq1d n = dom c n - m + 1 = dom c - m + 1
6 5 oveq2d n = dom c c m n - m + 1 = c m dom c - m + 1
7 3 6 oveq12d n = dom c ( n m) c m n - m + 1 = ( dom c m) c m dom c - m + 1
8 7 sumeq2sdv n = dom c m dom c ( n m) c m n - m + 1 = m dom c ( dom c m) c m dom c - m + 1
9 2 8 oveq12d n = dom c X n m dom c ( n m) c m n - m + 1 = X dom c m dom c ( dom c m) c m dom c - m + 1
10 1 9 csbie dom c / n X n m dom c ( n m) c m n - m + 1 = X dom c m dom c ( dom c m) c m dom c - m + 1
11 oveq2 m = k ( n m) = ( n k)
12 fveq2 m = k c m = c k
13 oveq2 m = k n m = n k
14 13 oveq1d m = k n - m + 1 = n - k + 1
15 12 14 oveq12d m = k c m n - m + 1 = c k n - k + 1
16 11 15 oveq12d m = k ( n m) c m n - m + 1 = ( n k) c k n - k + 1
17 16 cbvsumv m dom c ( n m) c m n - m + 1 = k dom c ( n k) c k n - k + 1
18 dmeq c = g dom c = dom g
19 fveq1 c = g c k = g k
20 19 oveq1d c = g c k n - k + 1 = g k n - k + 1
21 20 oveq2d c = g ( n k) c k n - k + 1 = ( n k) g k n - k + 1
22 21 adantr c = g k dom c ( n k) c k n - k + 1 = ( n k) g k n - k + 1
23 18 22 sumeq12dv c = g k dom c ( n k) c k n - k + 1 = k dom g ( n k) g k n - k + 1
24 17 23 eqtrid c = g m dom c ( n m) c m n - m + 1 = k dom g ( n k) g k n - k + 1
25 24 oveq2d c = g X n m dom c ( n m) c m n - m + 1 = X n k dom g ( n k) g k n - k + 1
26 25 csbeq2dv c = g dom c / n X n m dom c ( n m) c m n - m + 1 = dom c / n X n k dom g ( n k) g k n - k + 1
27 10 26 eqtr3id c = g X dom c m dom c ( dom c m) c m dom c - m + 1 = dom c / n X n k dom g ( n k) g k n - k + 1
28 18 fveq2d c = g dom c = dom g
29 28 csbeq1d c = g dom c / n X n k dom g ( n k) g k n - k + 1 = dom g / n X n k dom g ( n k) g k n - k + 1
30 27 29 eqtrd c = g X dom c m dom c ( dom c m) c m dom c - m + 1 = dom g / n X n k dom g ( n k) g k n - k + 1
31 30 cbvmptv c V X dom c m dom c ( dom c m) c m dom c - m + 1 = g V dom g / n X n k dom g ( n k) g k n - k + 1
32 eqid wrecs < 0 c V X dom c m dom c ( dom c m) c m dom c - m + 1 = wrecs < 0 c V X dom c m dom c ( dom c m) c m dom c - m + 1
33 31 32 bpolylem N 0 X N BernPoly X = X N k = 0 N 1 ( N k) k BernPoly X N - k + 1