Metamath Proof Explorer


Theorem bpos

Description: Bertrand's postulate: there is a prime between N and 2 N for every positive integer N . This proof follows Erdős's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. This is Metamath 100 proof #98. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion bpos N p N < p p 2 N

Proof

Step Hyp Ref Expression
1 bpos1 N N 64 p N < p p 2 N
2 eqid n 2 x + log x x n + 9 4 x + log x x n 2 + log 2 2 n = n 2 x + log x x n + 9 4 x + log x x n 2 + log 2 2 n
3 eqid x + log x x = x + log x x
4 simpll N 64 < N ¬ p N < p p 2 N N
5 simplr N 64 < N ¬ p N < p p 2 N 64 < N
6 simpr N 64 < N ¬ p N < p p 2 N ¬ p N < p p 2 N
7 2 3 4 5 6 bposlem9 N 64 < N ¬ p N < p p 2 N p N < p p 2 N
8 7 pm2.18da N 64 < N p N < p p 2 N
9 nnre N N
10 6nn0 6 0
11 4nn0 4 0
12 10 11 deccl 64 0
13 12 nn0rei 64
14 lelttric N 64 N 64 64 < N
15 9 13 14 sylancl N N 64 64 < N
16 1 8 15 mpjaodan N p N < p p 2 N