Metamath Proof Explorer


Theorem bpos1

Description: Bertrand's postulate, checked numerically for N <_ 6 4 , using the prime sequence 2 , 3 , 5 , 7 , 1 3 , 2 3 , 4 3 , 8 3 . (Contributed by Mario Carneiro, 12-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Assertion bpos1 N N 64 p N < p p 2 N

Proof

Step Hyp Ref Expression
1 elnnuz N N 1
2 ax-1 p N < p p 2 N N 64 p N < p p 2 N
3 6nn0 6 0
4 4nn0 4 0
5 3 4 deccl 64 0
6 5 nn0rei 64
7 6 a1i N 83 64
8 8nn0 8 0
9 3nn0 3 0
10 8 9 deccl 83 0
11 10 nn0rei 83
12 11 a1i N 83 83
13 eluzelre N 83 N
14 4lt10 4 < 10
15 6lt8 6 < 8
16 3 8 4 9 14 15 decltc 64 < 83
17 16 a1i N 83 64 < 83
18 eluzle N 83 83 N
19 7 12 13 17 18 ltletrd N 83 64 < N
20 ltnle 64 N 64 < N ¬ N 64
21 6 13 20 sylancr N 83 64 < N ¬ N 64
22 19 21 mpbid N 83 ¬ N 64
23 22 pm2.21d N 83 N 64 p N < p p 2 N
24 83prm 83
25 4 9 deccl 43 0
26 2nn0 2 0
27 eqid 43 = 43
28 4t2e8 4 2 = 8
29 3t2e6 3 2 = 6
30 26 4 9 27 28 29 decmul1 43 2 = 86
31 3lt10 3 < 10
32 4lt8 4 < 8
33 4 8 9 9 31 32 decltc 43 < 83
34 6nn 6
35 3lt6 3 < 6
36 8 9 34 35 declt 83 < 86
37 36 orci 83 < 86 83 = 86
38 2 23 24 25 30 33 37 bpos1lem N 43 N 64 p N < p p 2 N
39 43prm 43
40 26 9 deccl 23 0
41 eqid 23 = 23
42 2t2e4 2 2 = 4
43 26 26 9 41 42 29 decmul1 23 2 = 46
44 2lt4 2 < 4
45 26 4 9 9 31 44 decltc 23 < 43
46 4 9 34 35 declt 43 < 46
47 46 orci 43 < 46 43 = 46
48 2 38 39 40 43 45 47 bpos1lem N 23 N 64 p N < p p 2 N
49 23prm 23
50 1nn0 1 0
51 50 9 deccl 13 0
52 eqid 13 = 13
53 2cn 2
54 53 mulid2i 1 2 = 2
55 26 50 9 52 54 29 decmul1 13 2 = 26
56 1lt2 1 < 2
57 50 26 9 9 31 56 decltc 13 < 23
58 26 9 34 35 declt 23 < 26
59 58 orci 23 < 26 23 = 26
60 2 48 49 51 55 57 59 bpos1lem N 13 N 64 p N < p p 2 N
61 13prm 13
62 7nn0 7 0
63 7t2e14 7 2 = 14
64 1nn 1
65 7lt10 7 < 10
66 64 9 62 65 declti 7 < 13
67 4nn 4
68 3lt4 3 < 4
69 50 9 67 68 declt 13 < 14
70 69 orci 13 < 14 13 = 14
71 2 60 61 62 63 66 70 bpos1lem N 7 N 64 p N < p p 2 N
72 7prm 7
73 5nn0 5 0
74 5t2e10 5 2 = 10
75 5lt7 5 < 7
76 65 orci 7 < 10 7 = 10
77 2 71 72 73 74 75 76 bpos1lem N 5 N 64 p N < p p 2 N
78 5prm 5
79 3lt5 3 < 5
80 5lt6 5 < 6
81 80 orci 5 < 6 5 = 6
82 2 77 78 9 29 79 81 bpos1lem N 3 N 64 p N < p p 2 N
83 3prm 3
84 2lt3 2 < 3
85 68 orci 3 < 4 3 = 4
86 2 82 83 26 42 84 85 bpos1lem N 2 N 64 p N < p p 2 N
87 2prm 2
88 eqid 2 = 2
89 88 olci 2 < 2 2 = 2
90 2 86 87 50 54 56 89 bpos1lem N 1 N 64 p N < p p 2 N
91 1 90 sylbi N N 64 p N < p p 2 N
92 91 imp N N 64 p N < p p 2 N