Metamath Proof Explorer


Theorem bpos1lem

Description: Lemma for bpos1 . (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses bpos1.1 p N < p p 2 N φ
bpos1.2 N P φ
bpos1.3 P
bpos1.4 A 0
bpos1.5 A 2 = B
bpos1.6 A < P
bpos1.7 P < B P = B
Assertion bpos1lem N A φ

Proof

Step Hyp Ref Expression
1 bpos1.1 p N < p p 2 N φ
2 bpos1.2 N P φ
3 bpos1.3 P
4 bpos1.4 A 0
5 bpos1.5 A 2 = B
6 bpos1.6 A < P
7 bpos1.7 P < B P = B
8 prmnn P P
9 3 8 ax-mp P
10 9 nnzi P
11 eluzelz N A N
12 eluz P N N P P N
13 10 11 12 sylancr N A N P P N
14 13 2 syl6bir N A P N φ
15 9 nnrei P
16 15 a1i N A P
17 4 nn0rei A
18 2re 2
19 17 18 remulcli A 2
20 5 19 eqeltrri B
21 20 a1i N A B
22 eluzelre N A N
23 remulcl 2 N 2 N
24 18 22 23 sylancr N A 2 N
25 15 20 leloei P B P < B P = B
26 7 25 mpbir P B
27 26 a1i N A P B
28 4 nn0cni A
29 2cn 2
30 28 29 5 mulcomli 2 A = B
31 eluzle N A A N
32 2pos 0 < 2
33 18 32 pm3.2i 2 0 < 2
34 lemul2 A N 2 0 < 2 A N 2 A 2 N
35 17 33 34 mp3an13 N A N 2 A 2 N
36 22 35 syl N A A N 2 A 2 N
37 31 36 mpbid N A 2 A 2 N
38 30 37 eqbrtrrid N A B 2 N
39 16 21 24 27 38 letrd N A P 2 N
40 39 anim2i N < P N A N < P P 2 N
41 breq2 p = P N < p N < P
42 breq1 p = P p 2 N P 2 N
43 41 42 anbi12d p = P N < p p 2 N N < P P 2 N
44 43 rspcev P N < P P 2 N p N < p p 2 N
45 3 40 44 sylancr N < P N A p N < p p 2 N
46 45 1 syl N < P N A φ
47 46 expcom N A N < P φ
48 lelttric P N P N N < P
49 15 22 48 sylancr N A P N N < P
50 14 47 49 mpjaod N A φ