Metamath Proof Explorer


Theorem bposlem2

Description: There are no odd primes in the range ( 2 N / 3 , N ] dividing the N -th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses bposlem2.1 φ N
bposlem2.2 φ P
bposlem2.3 φ 2 < P
bposlem2.4 φ 2 N 3 < P
bposlem2.5 φ P N
Assertion bposlem2 φ P pCnt ( 2 N N) = 0

Proof

Step Hyp Ref Expression
1 bposlem2.1 φ N
2 bposlem2.2 φ P
3 bposlem2.3 φ 2 < P
4 bposlem2.4 φ 2 N 3 < P
5 bposlem2.5 φ P N
6 pcbcctr N P P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N P k
7 1 2 6 syl2anc φ P pCnt ( 2 N N) = k = 1 2 N 2 N P k 2 N P k
8 elfznn k 1 2 N k
9 elnn1uz2 k k = 1 k 2
10 8 9 sylib k 1 2 N k = 1 k 2
11 oveq2 k = 1 P k = P 1
12 prmnn P P
13 2 12 syl φ P
14 13 nncnd φ P
15 14 exp1d φ P 1 = P
16 11 15 sylan9eqr φ k = 1 P k = P
17 16 oveq2d φ k = 1 2 N P k = 2 N P
18 17 fveq2d φ k = 1 2 N P k = 2 N P
19 2t1e2 2 1 = 2
20 14 mulid2d φ 1 P = P
21 20 5 eqbrtrd φ 1 P N
22 1red φ 1
23 1 nnred φ N
24 13 nnred φ P
25 13 nngt0d φ 0 < P
26 lemuldiv 1 N P 0 < P 1 P N 1 N P
27 22 23 24 25 26 syl112anc φ 1 P N 1 N P
28 21 27 mpbid φ 1 N P
29 23 13 nndivred φ N P
30 1re 1
31 2re 2
32 2pos 0 < 2
33 31 32 pm3.2i 2 0 < 2
34 lemul2 1 N P 2 0 < 2 1 N P 2 1 2 N P
35 30 33 34 mp3an13 N P 1 N P 2 1 2 N P
36 29 35 syl φ 1 N P 2 1 2 N P
37 28 36 mpbid φ 2 1 2 N P
38 19 37 eqbrtrrid φ 2 2 N P
39 2cnd φ 2
40 1 nncnd φ N
41 13 nnne0d φ P 0
42 39 40 14 41 divassd φ 2 N P = 2 N P
43 38 42 breqtrrd φ 2 2 N P
44 2nn 2
45 nnmulcl 2 N 2 N
46 44 1 45 sylancr φ 2 N
47 46 nnred φ 2 N
48 3re 3
49 3pos 0 < 3
50 48 49 pm3.2i 3 0 < 3
51 ltdiv23 2 N 3 0 < 3 P 0 < P 2 N 3 < P 2 N P < 3
52 50 51 mp3an2 2 N P 0 < P 2 N 3 < P 2 N P < 3
53 47 24 25 52 syl12anc φ 2 N 3 < P 2 N P < 3
54 4 53 mpbid φ 2 N P < 3
55 df-3 3 = 2 + 1
56 54 55 breqtrdi φ 2 N P < 2 + 1
57 47 13 nndivred φ 2 N P
58 2z 2
59 flbi 2 N P 2 2 N P = 2 2 2 N P 2 N P < 2 + 1
60 57 58 59 sylancl φ 2 N P = 2 2 2 N P 2 N P < 2 + 1
61 43 56 60 mpbir2and φ 2 N P = 2
62 61 adantr φ k = 1 2 N P = 2
63 18 62 eqtrd φ k = 1 2 N P k = 2
64 16 oveq2d φ k = 1 N P k = N P
65 64 fveq2d φ k = 1 N P k = N P
66 remulcl 2 N P 2 N P
67 31 29 66 sylancr φ 2 N P
68 48 a1i φ 3
69 4re 4
70 69 a1i φ 4
71 42 54 eqbrtrrd φ 2 N P < 3
72 3lt4 3 < 4
73 72 a1i φ 3 < 4
74 67 68 70 71 73 lttrd φ 2 N P < 4
75 2t2e4 2 2 = 4
76 74 75 breqtrrdi φ 2 N P < 2 2
77 ltmul2 N P 2 2 0 < 2 N P < 2 2 N P < 2 2
78 31 33 77 mp3an23 N P N P < 2 2 N P < 2 2
79 29 78 syl φ N P < 2 2 N P < 2 2
80 76 79 mpbird φ N P < 2
81 df-2 2 = 1 + 1
82 80 81 breqtrdi φ N P < 1 + 1
83 1z 1
84 flbi N P 1 N P = 1 1 N P N P < 1 + 1
85 29 83 84 sylancl φ N P = 1 1 N P N P < 1 + 1
86 28 82 85 mpbir2and φ N P = 1
87 86 adantr φ k = 1 N P = 1
88 65 87 eqtrd φ k = 1 N P k = 1
89 88 oveq2d φ k = 1 2 N P k = 2 1
90 89 19 eqtrdi φ k = 1 2 N P k = 2
91 63 90 oveq12d φ k = 1 2 N P k 2 N P k = 2 2
92 2cn 2
93 92 subidi 2 2 = 0
94 91 93 eqtrdi φ k = 1 2 N P k 2 N P k = 0
95 46 nnrpd φ 2 N +
96 95 adantr φ k 2 2 N +
97 eluzge2nn0 k 2 k 0
98 nnexpcl P k 0 P k
99 13 97 98 syl2an φ k 2 P k
100 99 nnrpd φ k 2 P k +
101 96 100 rpdivcld φ k 2 2 N P k +
102 101 rpge0d φ k 2 0 2 N P k
103 47 adantr φ k 2 2 N
104 remulcl 3 P 3 P
105 48 24 104 sylancr φ 3 P
106 105 adantr φ k 2 3 P
107 99 nnred φ k 2 P k
108 ltdivmul 2 N P 3 0 < 3 2 N 3 < P 2 N < 3 P
109 50 108 mp3an3 2 N P 2 N 3 < P 2 N < 3 P
110 47 24 109 syl2anc φ 2 N 3 < P 2 N < 3 P
111 4 110 mpbid φ 2 N < 3 P
112 111 adantr φ k 2 2 N < 3 P
113 24 24 remulcld φ P P
114 113 adantr φ k 2 P P
115 nnltp1le 2 P 2 < P 2 + 1 P
116 44 13 115 sylancr φ 2 < P 2 + 1 P
117 3 116 mpbid φ 2 + 1 P
118 55 117 eqbrtrid φ 3 P
119 lemul1 3 P P 0 < P 3 P 3 P P P
120 48 119 mp3an1 P P 0 < P 3 P 3 P P P
121 24 24 25 120 syl12anc φ 3 P 3 P P P
122 118 121 mpbid φ 3 P P P
123 122 adantr φ k 2 3 P P P
124 14 sqvald φ P 2 = P P
125 124 adantr φ k 2 P 2 = P P
126 24 adantr φ k 2 P
127 13 nnge1d φ 1 P
128 127 adantr φ k 2 1 P
129 simpr φ k 2 k 2
130 126 128 129 leexp2ad φ k 2 P 2 P k
131 125 130 eqbrtrrd φ k 2 P P P k
132 106 114 107 123 131 letrd φ k 2 3 P P k
133 103 106 107 112 132 ltletrd φ k 2 2 N < P k
134 99 nncnd φ k 2 P k
135 134 mulid1d φ k 2 P k 1 = P k
136 133 135 breqtrrd φ k 2 2 N < P k 1
137 1red φ k 2 1
138 103 137 100 ltdivmuld φ k 2 2 N P k < 1 2 N < P k 1
139 136 138 mpbird φ k 2 2 N P k < 1
140 1e0p1 1 = 0 + 1
141 139 140 breqtrdi φ k 2 2 N P k < 0 + 1
142 101 rpred φ k 2 2 N P k
143 0z 0
144 flbi 2 N P k 0 2 N P k = 0 0 2 N P k 2 N P k < 0 + 1
145 142 143 144 sylancl φ k 2 2 N P k = 0 0 2 N P k 2 N P k < 0 + 1
146 102 141 145 mpbir2and φ k 2 2 N P k = 0
147 1 nnrpd φ N +
148 147 adantr φ k 2 N +
149 148 100 rpdivcld φ k 2 N P k +
150 149 rpge0d φ k 2 0 N P k
151 23 adantr φ k 2 N
152 23 147 ltaddrpd φ N < N + N
153 40 2timesd φ 2 N = N + N
154 152 153 breqtrrd φ N < 2 N
155 154 adantr φ k 2 N < 2 N
156 151 103 107 155 133 lttrd φ k 2 N < P k
157 156 135 breqtrrd φ k 2 N < P k 1
158 151 137 100 ltdivmuld φ k 2 N P k < 1 N < P k 1
159 157 158 mpbird φ k 2 N P k < 1
160 159 140 breqtrdi φ k 2 N P k < 0 + 1
161 149 rpred φ k 2 N P k
162 flbi N P k 0 N P k = 0 0 N P k N P k < 0 + 1
163 161 143 162 sylancl φ k 2 N P k = 0 0 N P k N P k < 0 + 1
164 150 160 163 mpbir2and φ k 2 N P k = 0
165 164 oveq2d φ k 2 2 N P k = 2 0
166 2t0e0 2 0 = 0
167 165 166 eqtrdi φ k 2 2 N P k = 0
168 146 167 oveq12d φ k 2 2 N P k 2 N P k = 0 0
169 0m0e0 0 0 = 0
170 168 169 eqtrdi φ k 2 2 N P k 2 N P k = 0
171 94 170 jaodan φ k = 1 k 2 2 N P k 2 N P k = 0
172 10 171 sylan2 φ k 1 2 N 2 N P k 2 N P k = 0
173 172 sumeq2dv φ k = 1 2 N 2 N P k 2 N P k = k = 1 2 N 0
174 fzfid φ 1 2 N Fin
175 sumz 1 2 N 1 1 2 N Fin k = 1 2 N 0 = 0
176 175 olcs 1 2 N Fin k = 1 2 N 0 = 0
177 174 176 syl φ k = 1 2 N 0 = 0
178 173 177 eqtrd φ k = 1 2 N 2 N P k 2 N P k = 0
179 7 178 eqtrd φ P pCnt ( 2 N N) = 0