Metamath Proof Explorer


Theorem bposlem4

Description: Lemma for bpos . (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Hypotheses bpos.1 φ N 5
bpos.2 φ ¬ p N < p p 2 N
bpos.3 F = n if n n n pCnt ( 2 N N) 1
bpos.4 K = 2 N 3
bpos.5 M = 2 N
Assertion bposlem4 φ M 3 K

Proof

Step Hyp Ref Expression
1 bpos.1 φ N 5
2 bpos.2 φ ¬ p N < p p 2 N
3 bpos.3 F = n if n n n pCnt ( 2 N N) 1
4 bpos.4 K = 2 N 3
5 bpos.5 M = 2 N
6 2nn 2
7 5nn 5
8 eluznn 5 N 5 N
9 7 1 8 sylancr φ N
10 nnmulcl 2 N 2 N
11 6 9 10 sylancr φ 2 N
12 11 nnred φ 2 N
13 11 nnrpd φ 2 N +
14 13 rpge0d φ 0 2 N
15 12 14 resqrtcld φ 2 N
16 15 flcld φ 2 N
17 sqrt9 9 = 3
18 9re 9
19 18 a1i φ 9
20 10re 10
21 20 a1i φ 10
22 lep1 9 9 9 + 1
23 18 22 ax-mp 9 9 + 1
24 9p1e10 9 + 1 = 10
25 23 24 breqtri 9 10
26 25 a1i φ 9 10
27 5cn 5
28 2cn 2
29 5t2e10 5 2 = 10
30 27 28 29 mulcomli 2 5 = 10
31 eluzle N 5 5 N
32 1 31 syl φ 5 N
33 9 nnred φ N
34 5re 5
35 2re 2
36 2pos 0 < 2
37 35 36 pm3.2i 2 0 < 2
38 lemul2 5 N 2 0 < 2 5 N 2 5 2 N
39 34 37 38 mp3an13 N 5 N 2 5 2 N
40 33 39 syl φ 5 N 2 5 2 N
41 32 40 mpbid φ 2 5 2 N
42 30 41 eqbrtrrid φ 10 2 N
43 19 21 12 26 42 letrd φ 9 2 N
44 0re 0
45 9pos 0 < 9
46 44 18 45 ltleii 0 9
47 18 46 pm3.2i 9 0 9
48 13 rprege0d φ 2 N 0 2 N
49 sqrtle 9 0 9 2 N 0 2 N 9 2 N 9 2 N
50 47 48 49 sylancr φ 9 2 N 9 2 N
51 43 50 mpbid φ 9 2 N
52 17 51 eqbrtrrid φ 3 2 N
53 3z 3
54 flge 2 N 3 3 2 N 3 2 N
55 15 53 54 sylancl φ 3 2 N 3 2 N
56 52 55 mpbid φ 3 2 N
57 53 eluz1i 2 N 3 2 N 3 2 N
58 16 56 57 sylanbrc φ 2 N 3
59 3nn 3
60 nndivre 2 N 3 2 N 3
61 12 59 60 sylancl φ 2 N 3
62 3re 3
63 62 a1i φ 3
64 13 sqrtgt0d φ 0 < 2 N
65 lemul2 3 2 N 2 N 0 < 2 N 3 2 N 2 N 3 2 N 2 N
66 63 15 15 64 65 syl112anc φ 3 2 N 2 N 3 2 N 2 N
67 52 66 mpbid φ 2 N 3 2 N 2 N
68 remsqsqrt 2 N 0 2 N 2 N 2 N = 2 N
69 12 14 68 syl2anc φ 2 N 2 N = 2 N
70 67 69 breqtrd φ 2 N 3 2 N
71 3pos 0 < 3
72 62 71 pm3.2i 3 0 < 3
73 72 a1i φ 3 0 < 3
74 lemuldiv 2 N 2 N 3 0 < 3 2 N 3 2 N 2 N 2 N 3
75 15 12 73 74 syl3anc φ 2 N 3 2 N 2 N 2 N 3
76 70 75 mpbid φ 2 N 2 N 3
77 flword2 2 N 2 N 3 2 N 2 N 3 2 N 3 2 N
78 15 61 76 77 syl3anc φ 2 N 3 2 N
79 elfzuzb 2 N 3 2 N 3 2 N 3 2 N 3 2 N
80 58 78 79 sylanbrc φ 2 N 3 2 N 3
81 4 oveq2i 3 K = 3 2 N 3
82 80 5 81 3eltr4g φ M 3 K