Metamath Proof Explorer


Theorem bposlem5

Description: Lemma for bpos . Bound the product of all small primes in the binomial coefficient. (Contributed by Mario Carneiro, 15-Mar-2014) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypotheses bpos.1 φ N 5
bpos.2 φ ¬ p N < p p 2 N
bpos.3 F = n if n n n pCnt ( 2 N N) 1
bpos.4 K = 2 N 3
bpos.5 M = 2 N
Assertion bposlem5 φ seq 1 × F M 2 N 2 N 3 + 2

Proof

Step Hyp Ref Expression
1 bpos.1 φ N 5
2 bpos.2 φ ¬ p N < p p 2 N
3 bpos.3 F = n if n n n pCnt ( 2 N N) 1
4 bpos.4 K = 2 N 3
5 bpos.5 M = 2 N
6 id n n
7 5nn 5
8 eluznn 5 N 5 N
9 7 1 8 sylancr φ N
10 9 nnnn0d φ N 0
11 fzctr N 0 N 0 2 N
12 bccl2 N 0 2 N ( 2 N N)
13 10 11 12 3syl φ ( 2 N N)
14 pccl n ( 2 N N) n pCnt ( 2 N N) 0
15 6 13 14 syl2anr φ n n pCnt ( 2 N N) 0
16 15 ralrimiva φ n n pCnt ( 2 N N) 0
17 3 16 pcmptcl φ F : seq 1 × F :
18 17 simprd φ seq 1 × F :
19 3nn 3
20 2z 2
21 9 nnzd φ N
22 zmulcl 2 N 2 N
23 20 21 22 sylancr φ 2 N
24 23 zred φ 2 N
25 2nn 2
26 nnmulcl 2 N 2 N
27 25 9 26 sylancr φ 2 N
28 27 nnrpd φ 2 N +
29 28 rpge0d φ 0 2 N
30 24 29 resqrtcld φ 2 N
31 30 flcld φ 2 N
32 sqrt9 9 = 3
33 9re 9
34 33 a1i φ 9
35 10re 10
36 35 a1i φ 10
37 lep1 9 9 9 + 1
38 33 37 ax-mp 9 9 + 1
39 9p1e10 9 + 1 = 10
40 38 39 breqtri 9 10
41 40 a1i φ 9 10
42 5cn 5
43 2cn 2
44 5t2e10 5 2 = 10
45 42 43 44 mulcomli 2 5 = 10
46 eluzle N 5 5 N
47 1 46 syl φ 5 N
48 9 nnred φ N
49 5re 5
50 2re 2
51 2pos 0 < 2
52 50 51 pm3.2i 2 0 < 2
53 lemul2 5 N 2 0 < 2 5 N 2 5 2 N
54 49 52 53 mp3an13 N 5 N 2 5 2 N
55 48 54 syl φ 5 N 2 5 2 N
56 47 55 mpbid φ 2 5 2 N
57 45 56 eqbrtrrid φ 10 2 N
58 34 36 24 41 57 letrd φ 9 2 N
59 0re 0
60 9pos 0 < 9
61 59 33 60 ltleii 0 9
62 33 61 pm3.2i 9 0 9
63 24 29 jca φ 2 N 0 2 N
64 sqrtle 9 0 9 2 N 0 2 N 9 2 N 9 2 N
65 62 63 64 sylancr φ 9 2 N 9 2 N
66 58 65 mpbid φ 9 2 N
67 32 66 eqbrtrrid φ 3 2 N
68 3z 3
69 flge 2 N 3 3 2 N 3 2 N
70 30 68 69 sylancl φ 3 2 N 3 2 N
71 67 70 mpbid φ 3 2 N
72 68 eluz1i 2 N 3 2 N 3 2 N
73 31 71 72 sylanbrc φ 2 N 3
74 5 73 eqeltrid φ M 3
75 eluznn 3 M 3 M
76 19 74 75 sylancr φ M
77 18 76 ffvelrnd φ seq 1 × F M
78 77 nnred φ seq 1 × F M
79 76 nnred φ M
80 ppicl M π _ M 0
81 79 80 syl φ π _ M 0
82 27 81 nnexpcld φ 2 N π _ M
83 82 nnred φ 2 N π _ M
84 nndivre 2 N 3 2 N 3
85 30 19 84 sylancl φ 2 N 3
86 readdcl 2 N 3 2 2 N 3 + 2
87 85 50 86 sylancl φ 2 N 3 + 2
88 24 29 87 recxpcld φ 2 N 2 N 3 + 2
89 fveq2 x = 1 seq 1 × F x = seq 1 × F 1
90 fveq2 x = 1 π _ x = π _ 1
91 ppi1 π _ 1 = 0
92 90 91 eqtrdi x = 1 π _ x = 0
93 92 oveq2d x = 1 2 N π _ x = 2 N 0
94 89 93 breq12d x = 1 seq 1 × F x 2 N π _ x seq 1 × F 1 2 N 0
95 94 imbi2d x = 1 φ seq 1 × F x 2 N π _ x φ seq 1 × F 1 2 N 0
96 fveq2 x = k seq 1 × F x = seq 1 × F k
97 fveq2 x = k π _ x = π _ k
98 97 oveq2d x = k 2 N π _ x = 2 N π _ k
99 96 98 breq12d x = k seq 1 × F x 2 N π _ x seq 1 × F k 2 N π _ k
100 99 imbi2d x = k φ seq 1 × F x 2 N π _ x φ seq 1 × F k 2 N π _ k
101 fveq2 x = k + 1 seq 1 × F x = seq 1 × F k + 1
102 fveq2 x = k + 1 π _ x = π _ k + 1
103 102 oveq2d x = k + 1 2 N π _ x = 2 N π _ k + 1
104 101 103 breq12d x = k + 1 seq 1 × F x 2 N π _ x seq 1 × F k + 1 2 N π _ k + 1
105 104 imbi2d x = k + 1 φ seq 1 × F x 2 N π _ x φ seq 1 × F k + 1 2 N π _ k + 1
106 fveq2 x = M seq 1 × F x = seq 1 × F M
107 fveq2 x = M π _ x = π _ M
108 107 oveq2d x = M 2 N π _ x = 2 N π _ M
109 106 108 breq12d x = M seq 1 × F x 2 N π _ x seq 1 × F M 2 N π _ M
110 109 imbi2d x = M φ seq 1 × F x 2 N π _ x φ seq 1 × F M 2 N π _ M
111 1z 1
112 seq1 1 seq 1 × F 1 = F 1
113 111 112 ax-mp seq 1 × F 1 = F 1
114 1nn 1
115 1nprm ¬ 1
116 eleq1 n = 1 n 1
117 115 116 mtbiri n = 1 ¬ n
118 117 iffalsed n = 1 if n n n pCnt ( 2 N N) 1 = 1
119 1ex 1 V
120 118 3 119 fvmpt 1 F 1 = 1
121 114 120 ax-mp F 1 = 1
122 113 121 eqtri seq 1 × F 1 = 1
123 1le1 1 1
124 122 123 eqbrtri seq 1 × F 1 1
125 23 zcnd φ 2 N
126 125 exp0d φ 2 N 0 = 1
127 124 126 breqtrrid φ seq 1 × F 1 2 N 0
128 18 ffvelrnda φ k seq 1 × F k
129 128 nnred φ k seq 1 × F k
130 129 adantr φ k k + 1 seq 1 × F k
131 27 ad2antrr φ k k + 1 2 N
132 nnre k k
133 132 ad2antlr φ k k + 1 k
134 ppicl k π _ k 0
135 133 134 syl φ k k + 1 π _ k 0
136 131 135 nnexpcld φ k k + 1 2 N π _ k
137 136 nnred φ k k + 1 2 N π _ k
138 nnre 2 N 2 N
139 nngt0 2 N 0 < 2 N
140 138 139 jca 2 N 2 N 0 < 2 N
141 27 140 syl φ 2 N 0 < 2 N
142 141 ad2antrr φ k k + 1 2 N 0 < 2 N
143 lemul1 seq 1 × F k 2 N π _ k 2 N 0 < 2 N seq 1 × F k 2 N π _ k seq 1 × F k 2 N 2 N π _ k 2 N
144 130 137 142 143 syl3anc φ k k + 1 seq 1 × F k 2 N π _ k seq 1 × F k 2 N 2 N π _ k 2 N
145 nnz k k
146 145 adantl φ k k
147 ppiprm k k + 1 π _ k + 1 = π _ k + 1
148 146 147 sylan φ k k + 1 π _ k + 1 = π _ k + 1
149 148 oveq2d φ k k + 1 2 N π _ k + 1 = 2 N π _ k + 1
150 125 ad2antrr φ k k + 1 2 N
151 150 135 expp1d φ k k + 1 2 N π _ k + 1 = 2 N π _ k 2 N
152 149 151 eqtrd φ k k + 1 2 N π _ k + 1 = 2 N π _ k 2 N
153 152 breq2d φ k k + 1 seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k 2 N 2 N π _ k 2 N
154 144 153 bitr4d φ k k + 1 seq 1 × F k 2 N π _ k seq 1 × F k 2 N 2 N π _ k + 1
155 simpr φ k k
156 nnuz = 1
157 155 156 eleqtrdi φ k k 1
158 seqp1 k 1 seq 1 × F k + 1 = seq 1 × F k F k + 1
159 157 158 syl φ k seq 1 × F k + 1 = seq 1 × F k F k + 1
160 159 adantr φ k k + 1 seq 1 × F k + 1 = seq 1 × F k F k + 1
161 peano2nn k k + 1
162 161 adantl φ k k + 1
163 eleq1 n = k + 1 n k + 1
164 id n = k + 1 n = k + 1
165 oveq1 n = k + 1 n pCnt ( 2 N N) = k + 1 pCnt ( 2 N N)
166 164 165 oveq12d n = k + 1 n n pCnt ( 2 N N) = k + 1 k + 1 pCnt ( 2 N N)
167 163 166 ifbieq1d n = k + 1 if n n n pCnt ( 2 N N) 1 = if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1
168 ovex k + 1 k + 1 pCnt ( 2 N N) V
169 168 119 ifex if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1 V
170 167 3 169 fvmpt k + 1 F k + 1 = if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1
171 162 170 syl φ k F k + 1 = if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1
172 iftrue k + 1 if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1 = k + 1 k + 1 pCnt ( 2 N N)
173 171 172 sylan9eq φ k k + 1 F k + 1 = k + 1 k + 1 pCnt ( 2 N N)
174 9 adantr φ k N
175 bposlem1 N k + 1 k + 1 k + 1 pCnt ( 2 N N) 2 N
176 174 175 sylan φ k k + 1 k + 1 k + 1 pCnt ( 2 N N) 2 N
177 173 176 eqbrtrd φ k k + 1 F k + 1 2 N
178 17 simpld φ F :
179 ffvelrn F : k + 1 F k + 1
180 178 161 179 syl2an φ k F k + 1
181 180 nnred φ k F k + 1
182 181 adantr φ k k + 1 F k + 1
183 24 ad2antrr φ k k + 1 2 N
184 nnre seq 1 × F k seq 1 × F k
185 nngt0 seq 1 × F k 0 < seq 1 × F k
186 184 185 jca seq 1 × F k seq 1 × F k 0 < seq 1 × F k
187 128 186 syl φ k seq 1 × F k 0 < seq 1 × F k
188 187 adantr φ k k + 1 seq 1 × F k 0 < seq 1 × F k
189 lemul2 F k + 1 2 N seq 1 × F k 0 < seq 1 × F k F k + 1 2 N seq 1 × F k F k + 1 seq 1 × F k 2 N
190 182 183 188 189 syl3anc φ k k + 1 F k + 1 2 N seq 1 × F k F k + 1 seq 1 × F k 2 N
191 177 190 mpbid φ k k + 1 seq 1 × F k F k + 1 seq 1 × F k 2 N
192 160 191 eqbrtrd φ k k + 1 seq 1 × F k + 1 seq 1 × F k 2 N
193 ffvelrn seq 1 × F : k + 1 seq 1 × F k + 1
194 18 161 193 syl2an φ k seq 1 × F k + 1
195 194 nnred φ k seq 1 × F k + 1
196 27 adantr φ k 2 N
197 128 196 nnmulcld φ k seq 1 × F k 2 N
198 197 nnred φ k seq 1 × F k 2 N
199 162 nnred φ k k + 1
200 ppicl k + 1 π _ k + 1 0
201 199 200 syl φ k π _ k + 1 0
202 196 201 nnexpcld φ k 2 N π _ k + 1
203 202 nnred φ k 2 N π _ k + 1
204 letr seq 1 × F k + 1 seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k + 1 seq 1 × F k 2 N seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k + 1 2 N π _ k + 1
205 195 198 203 204 syl3anc φ k seq 1 × F k + 1 seq 1 × F k 2 N seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k + 1 2 N π _ k + 1
206 205 adantr φ k k + 1 seq 1 × F k + 1 seq 1 × F k 2 N seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k + 1 2 N π _ k + 1
207 192 206 mpand φ k k + 1 seq 1 × F k 2 N 2 N π _ k + 1 seq 1 × F k + 1 2 N π _ k + 1
208 154 207 sylbid φ k k + 1 seq 1 × F k 2 N π _ k seq 1 × F k + 1 2 N π _ k + 1
209 159 adantr φ k ¬ k + 1 seq 1 × F k + 1 = seq 1 × F k F k + 1
210 iffalse ¬ k + 1 if k + 1 k + 1 k + 1 pCnt ( 2 N N) 1 = 1
211 171 210 sylan9eq φ k ¬ k + 1 F k + 1 = 1
212 211 oveq2d φ k ¬ k + 1 seq 1 × F k F k + 1 = seq 1 × F k 1
213 128 adantr φ k ¬ k + 1 seq 1 × F k
214 213 nncnd φ k ¬ k + 1 seq 1 × F k
215 214 mulid1d φ k ¬ k + 1 seq 1 × F k 1 = seq 1 × F k
216 209 212 215 3eqtrd φ k ¬ k + 1 seq 1 × F k + 1 = seq 1 × F k
217 ppinprm k ¬ k + 1 π _ k + 1 = π _ k
218 146 217 sylan φ k ¬ k + 1 π _ k + 1 = π _ k
219 218 oveq2d φ k ¬ k + 1 2 N π _ k + 1 = 2 N π _ k
220 216 219 breq12d φ k ¬ k + 1 seq 1 × F k + 1 2 N π _ k + 1 seq 1 × F k 2 N π _ k
221 220 biimprd φ k ¬ k + 1 seq 1 × F k 2 N π _ k seq 1 × F k + 1 2 N π _ k + 1
222 208 221 pm2.61dan φ k seq 1 × F k 2 N π _ k seq 1 × F k + 1 2 N π _ k + 1
223 222 expcom k φ seq 1 × F k 2 N π _ k seq 1 × F k + 1 2 N π _ k + 1
224 223 a2d k φ seq 1 × F k 2 N π _ k φ seq 1 × F k + 1 2 N π _ k + 1
225 95 100 105 110 127 224 nnind M φ seq 1 × F M 2 N π _ M
226 76 225 mpcom φ seq 1 × F M 2 N π _ M
227 cxpexp 2 N π _ M 0 2 N π _ M = 2 N π _ M
228 125 81 227 syl2anc φ 2 N π _ M = 2 N π _ M
229 81 nn0red φ π _ M
230 nndivre M 3 M 3
231 79 19 230 sylancl φ M 3
232 readdcl M 3 2 M 3 + 2
233 231 50 232 sylancl φ M 3 + 2
234 76 nnnn0d φ M 0
235 234 nn0ge0d φ 0 M
236 ppiub M 0 M π _ M M 3 + 2
237 79 235 236 syl2anc φ π _ M M 3 + 2
238 50 a1i φ 2
239 flle 2 N 2 N 2 N
240 30 239 syl φ 2 N 2 N
241 5 240 eqbrtrid φ M 2 N
242 3re 3
243 3pos 0 < 3
244 242 243 pm3.2i 3 0 < 3
245 244 a1i φ 3 0 < 3
246 lediv1 M 2 N 3 0 < 3 M 2 N M 3 2 N 3
247 79 30 245 246 syl3anc φ M 2 N M 3 2 N 3
248 241 247 mpbid φ M 3 2 N 3
249 231 85 238 248 leadd1dd φ M 3 + 2 2 N 3 + 2
250 229 233 87 237 249 letrd φ π _ M 2 N 3 + 2
251 2t1e2 2 1 = 2
252 9 nnge1d φ 1 N
253 1re 1
254 lemul2 1 N 2 0 < 2 1 N 2 1 2 N
255 253 52 254 mp3an13 N 1 N 2 1 2 N
256 48 255 syl φ 1 N 2 1 2 N
257 252 256 mpbid φ 2 1 2 N
258 251 257 eqbrtrrid φ 2 2 N
259 20 eluz1i 2 N 2 2 N 2 2 N
260 23 258 259 sylanbrc φ 2 N 2
261 eluz2gt1 2 N 2 1 < 2 N
262 260 261 syl φ 1 < 2 N
263 24 262 229 87 cxpled φ π _ M 2 N 3 + 2 2 N π _ M 2 N 2 N 3 + 2
264 250 263 mpbid φ 2 N π _ M 2 N 2 N 3 + 2
265 228 264 eqbrtrrd φ 2 N π _ M 2 N 2 N 3 + 2
266 78 83 88 226 265 letrd φ seq 1 × F M 2 N 2 N 3 + 2