Metamath Proof Explorer


Theorem bposlem7

Description: Lemma for bpos . The function F is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Hypotheses bposlem7.1 F = n 2 G n + 9 4 G n 2 + log 2 2 n
bposlem7.2 G = x + log x x
bposlem7.3 φ A
bposlem7.4 φ B
bposlem7.5 φ e 2 A
bposlem7.6 φ e 2 B
Assertion bposlem7 φ A < B F B < F A

Proof

Step Hyp Ref Expression
1 bposlem7.1 F = n 2 G n + 9 4 G n 2 + log 2 2 n
2 bposlem7.2 G = x + log x x
3 bposlem7.3 φ A
4 bposlem7.4 φ B
5 bposlem7.5 φ e 2 A
6 bposlem7.6 φ e 2 B
7 4 nnrpd φ B +
8 7 rpsqrtcld φ B +
9 fveq2 x = B log x = log B
10 id x = B x = B
11 9 10 oveq12d x = B log x x = log B B
12 ovex log B B V
13 11 2 12 fvmpt B + G B = log B B
14 8 13 syl φ G B = log B B
15 3 nnrpd φ A +
16 15 rpsqrtcld φ A +
17 fveq2 x = A log x = log A
18 id x = A x = A
19 17 18 oveq12d x = A log x x = log A A
20 ovex log A A V
21 19 2 20 fvmpt A + G A = log A A
22 16 21 syl φ G A = log A A
23 14 22 breq12d φ G B < G A log B B < log A A
24 16 rpred φ A
25 15 rprege0d φ A 0 A
26 resqrtth A 0 A A 2 = A
27 25 26 syl φ A 2 = A
28 5 27 breqtrrd φ e 2 A 2
29 16 rpge0d φ 0 A
30 ere e
31 0re 0
32 epos 0 < e
33 31 30 32 ltleii 0 e
34 le2sq e 0 e A 0 A e A e 2 A 2
35 30 33 34 mpanl12 A 0 A e A e 2 A 2
36 24 29 35 syl2anc φ e A e 2 A 2
37 28 36 mpbird φ e A
38 8 rpred φ B
39 7 rprege0d φ B 0 B
40 resqrtth B 0 B B 2 = B
41 39 40 syl φ B 2 = B
42 6 41 breqtrrd φ e 2 B 2
43 8 rpge0d φ 0 B
44 le2sq e 0 e B 0 B e B e 2 B 2
45 30 33 44 mpanl12 B 0 B e B e 2 B 2
46 38 43 45 syl2anc φ e B e 2 B 2
47 42 46 mpbird φ e B
48 logdivlt A e A B e B A < B log B B < log A A
49 24 37 38 47 48 syl22anc φ A < B log B B < log A A
50 24 38 29 43 lt2sqd φ A < B A 2 < B 2
51 23 49 50 3bitr2rd φ A 2 < B 2 G B < G A
52 27 41 breq12d φ A 2 < B 2 A < B
53 relogcl x + log x
54 rerpdivcl log x x + log x x
55 53 54 mpancom x + log x x
56 2 55 fmpti G : +
57 56 ffvelrni B + G B
58 8 57 syl φ G B
59 56 ffvelrni A + G A
60 16 59 syl φ G A
61 2rp 2 +
62 rpsqrtcl 2 + 2 +
63 61 62 mp1i φ 2 +
64 58 60 63 ltmul2d φ G B < G A 2 G B < 2 G A
65 51 52 64 3bitr3d φ A < B 2 G B < 2 G A
66 65 biimpd φ A < B 2 G B < 2 G A
67 3 nnred φ A
68 4 nnred φ B
69 2re 2
70 2pos 0 < 2
71 69 70 pm3.2i 2 0 < 2
72 71 a1i φ 2 0 < 2
73 ltdiv1 A B 2 0 < 2 A < B A 2 < B 2
74 67 68 72 73 syl3anc φ A < B A 2 < B 2
75 15 rphalfcld φ A 2 +
76 75 rpred φ A 2
77 30 69 remulcli e 2
78 77 a1i φ e 2
79 30 resqcli e 2
80 79 a1i φ e 2
81 egt2lt3 2 < e e < 3
82 81 simpli 2 < e
83 69 30 82 ltleii 2 e
84 69 30 30 lemul2i 0 < e 2 e e 2 e e
85 32 84 ax-mp 2 e e 2 e e
86 83 85 mpbi e 2 e e
87 30 recni e
88 87 sqvali e 2 = e e
89 86 88 breqtrri e 2 e 2
90 89 a1i φ e 2 e 2
91 78 80 67 90 5 letrd φ e 2 A
92 lemuldiv e A 2 0 < 2 e 2 A e A 2
93 30 71 92 mp3an13 A e 2 A e A 2
94 67 93 syl φ e 2 A e A 2
95 91 94 mpbid φ e A 2
96 7 rphalfcld φ B 2 +
97 96 rpred φ B 2
98 78 80 68 90 6 letrd φ e 2 B
99 lemuldiv e B 2 0 < 2 e 2 B e B 2
100 30 71 99 mp3an13 B e 2 B e B 2
101 68 100 syl φ e 2 B e B 2
102 98 101 mpbid φ e B 2
103 logdivlt A 2 e A 2 B 2 e B 2 A 2 < B 2 log B 2 B 2 < log A 2 A 2
104 76 95 97 102 103 syl22anc φ A 2 < B 2 log B 2 B 2 < log A 2 A 2
105 74 104 bitrd φ A < B log B 2 B 2 < log A 2 A 2
106 fveq2 x = B 2 log x = log B 2
107 id x = B 2 x = B 2
108 106 107 oveq12d x = B 2 log x x = log B 2 B 2
109 ovex log B 2 B 2 V
110 108 2 109 fvmpt B 2 + G B 2 = log B 2 B 2
111 96 110 syl φ G B 2 = log B 2 B 2
112 fveq2 x = A 2 log x = log A 2
113 id x = A 2 x = A 2
114 112 113 oveq12d x = A 2 log x x = log A 2 A 2
115 ovex log A 2 A 2 V
116 114 2 115 fvmpt A 2 + G A 2 = log A 2 A 2
117 75 116 syl φ G A 2 = log A 2 A 2
118 111 117 breq12d φ G B 2 < G A 2 log B 2 B 2 < log A 2 A 2
119 56 ffvelrni B 2 + G B 2
120 96 119 syl φ G B 2
121 56 ffvelrni A 2 + G A 2
122 75 121 syl φ G A 2
123 9nn 9
124 4nn 4
125 nnrp 9 9 +
126 nnrp 4 4 +
127 rpdivcl 9 + 4 + 9 4 +
128 125 126 127 syl2an 9 4 9 4 +
129 123 124 128 mp2an 9 4 +
130 129 a1i φ 9 4 +
131 120 122 130 ltmul2d φ G B 2 < G A 2 9 4 G B 2 < 9 4 G A 2
132 105 118 131 3bitr2d φ A < B 9 4 G B 2 < 9 4 G A 2
133 132 biimpd φ A < B 9 4 G B 2 < 9 4 G A 2
134 66 133 jcad φ A < B 2 G B < 2 G A 9 4 G B 2 < 9 4 G A 2
135 sqrt2re 2
136 remulcl 2 G B 2 G B
137 135 58 136 sylancr φ 2 G B
138 9re 9
139 4re 4
140 4ne0 4 0
141 138 139 140 redivcli 9 4
142 remulcl 9 4 G B 2 9 4 G B 2
143 141 120 142 sylancr φ 9 4 G B 2
144 remulcl 2 G A 2 G A
145 135 60 144 sylancr φ 2 G A
146 remulcl 9 4 G A 2 9 4 G A 2
147 141 122 146 sylancr φ 9 4 G A 2
148 lt2add 2 G B 9 4 G B 2 2 G A 9 4 G A 2 2 G B < 2 G A 9 4 G B 2 < 9 4 G A 2 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2
149 137 143 145 147 148 syl22anc φ 2 G B < 2 G A 9 4 G B 2 < 9 4 G A 2 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2
150 134 149 syld φ A < B 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2
151 ltmul2 A B 2 0 < 2 A < B 2 A < 2 B
152 67 68 72 151 syl3anc φ A < B 2 A < 2 B
153 rpmulcl 2 + A + 2 A +
154 61 15 153 sylancr φ 2 A +
155 154 rpsqrtcld φ 2 A +
156 rpmulcl 2 + B + 2 B +
157 61 7 156 sylancr φ 2 B +
158 157 rpsqrtcld φ 2 B +
159 rprege0 2 A + 2 A 0 2 A
160 rprege0 2 B + 2 B 0 2 B
161 lt2sq 2 A 0 2 A 2 B 0 2 B 2 A < 2 B 2 A 2 < 2 B 2
162 159 160 161 syl2an 2 A + 2 B + 2 A < 2 B 2 A 2 < 2 B 2
163 155 158 162 syl2anc φ 2 A < 2 B 2 A 2 < 2 B 2
164 154 rprege0d φ 2 A 0 2 A
165 resqrtth 2 A 0 2 A 2 A 2 = 2 A
166 164 165 syl φ 2 A 2 = 2 A
167 157 rprege0d φ 2 B 0 2 B
168 resqrtth 2 B 0 2 B 2 B 2 = 2 B
169 167 168 syl φ 2 B 2 = 2 B
170 166 169 breq12d φ 2 A 2 < 2 B 2 2 A < 2 B
171 163 170 bitr2d φ 2 A < 2 B 2 A < 2 B
172 1lt2 1 < 2
173 rplogcl 2 1 < 2 log 2 +
174 69 172 173 mp2an log 2 +
175 174 a1i φ log 2 +
176 155 158 175 ltdiv2d φ 2 A < 2 B log 2 2 B < log 2 2 A
177 152 171 176 3bitrd φ A < B log 2 2 B < log 2 2 A
178 177 biimpd φ A < B log 2 2 B < log 2 2 A
179 150 178 jcad φ A < B 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2 log 2 2 B < log 2 2 A
180 137 143 readdcld φ 2 G B + 9 4 G B 2
181 rpre log 2 + log 2
182 174 181 ax-mp log 2
183 rerpdivcl log 2 2 B + log 2 2 B
184 182 158 183 sylancr φ log 2 2 B
185 145 147 readdcld φ 2 G A + 9 4 G A 2
186 rerpdivcl log 2 2 A + log 2 2 A
187 182 155 186 sylancr φ log 2 2 A
188 lt2add 2 G B + 9 4 G B 2 log 2 2 B 2 G A + 9 4 G A 2 log 2 2 A 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2 log 2 2 B < log 2 2 A 2 G B + 9 4 G B 2 + log 2 2 B < 2 G A + 9 4 G A 2 + log 2 2 A
189 180 184 185 187 188 syl22anc φ 2 G B + 9 4 G B 2 < 2 G A + 9 4 G A 2 log 2 2 B < log 2 2 A 2 G B + 9 4 G B 2 + log 2 2 B < 2 G A + 9 4 G A 2 + log 2 2 A
190 179 189 syld φ A < B 2 G B + 9 4 G B 2 + log 2 2 B < 2 G A + 9 4 G A 2 + log 2 2 A
191 2fveq3 n = B G n = G B
192 191 oveq2d n = B 2 G n = 2 G B
193 fvoveq1 n = B G n 2 = G B 2
194 193 oveq2d n = B 9 4 G n 2 = 9 4 G B 2
195 192 194 oveq12d n = B 2 G n + 9 4 G n 2 = 2 G B + 9 4 G B 2
196 oveq2 n = B 2 n = 2 B
197 196 fveq2d n = B 2 n = 2 B
198 197 oveq2d n = B log 2 2 n = log 2 2 B
199 195 198 oveq12d n = B 2 G n + 9 4 G n 2 + log 2 2 n = 2 G B + 9 4 G B 2 + log 2 2 B
200 ovex 2 G B + 9 4 G B 2 + log 2 2 B V
201 199 1 200 fvmpt B F B = 2 G B + 9 4 G B 2 + log 2 2 B
202 4 201 syl φ F B = 2 G B + 9 4 G B 2 + log 2 2 B
203 2fveq3 n = A G n = G A
204 203 oveq2d n = A 2 G n = 2 G A
205 fvoveq1 n = A G n 2 = G A 2
206 205 oveq2d n = A 9 4 G n 2 = 9 4 G A 2
207 204 206 oveq12d n = A 2 G n + 9 4 G n 2 = 2 G A + 9 4 G A 2
208 oveq2 n = A 2 n = 2 A
209 208 fveq2d n = A 2 n = 2 A
210 209 oveq2d n = A log 2 2 n = log 2 2 A
211 207 210 oveq12d n = A 2 G n + 9 4 G n 2 + log 2 2 n = 2 G A + 9 4 G A 2 + log 2 2 A
212 ovex 2 G A + 9 4 G A 2 + log 2 2 A V
213 211 1 212 fvmpt A F A = 2 G A + 9 4 G A 2 + log 2 2 A
214 3 213 syl φ F A = 2 G A + 9 4 G A 2 + log 2 2 A
215 202 214 breq12d φ F B < F A 2 G B + 9 4 G B 2 + log 2 2 B < 2 G A + 9 4 G A 2 + log 2 2 A
216 190 215 sylibrd φ A < B F B < F A