Metamath Proof Explorer


Theorem br1cnvinxp

Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion br1cnvinxp C R A × B -1 D C B D A D R C

Proof

Step Hyp Ref Expression
1 relinxp Rel R A × B
2 1 relbrcnv C R A × B -1 D D R A × B C
3 brinxp2 D R A × B C D A C B D R C
4 ancom D A C B C B D A
5 4 anbi1i D A C B D R C C B D A D R C
6 2 3 5 3bitri C R A × B -1 D C B D A D R C