Metamath Proof Explorer


Theorem br1cnvres

Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion br1cnvres B V B R A -1 C C A C R B

Proof

Step Hyp Ref Expression
1 df-res R A = R A × V
2 1 cnveqi R A -1 = R A × V -1
3 2 breqi B R A -1 C B R A × V -1 C
4 elex B V B V
5 br1cnvinxp B R A × V -1 C B V C A C R B
6 anass B V C A C R B B V C A C R B
7 5 6 bitri B R A × V -1 C B V C A C R B
8 7 baib B V B R A × V -1 C C A C R B
9 4 8 syl B V B R A × V -1 C C A C R B
10 3 9 bitrid B V B R A -1 C C A C R B