Metamath Proof Explorer


Theorem bra11

Description: The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion bra11 bra : 1-1 onto LinFn ContFn

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 mptex y y ih x V
3 df-bra bra = x y y ih x
4 2 3 fnmpti bra Fn
5 rnbra ran bra = LinFn ContFn
6 fveq1 bra x = bra y bra x z = bra y z
7 braval x z bra x z = z ih x
8 7 adantlr x y z bra x z = z ih x
9 braval y z bra y z = z ih y
10 9 adantll x y z bra y z = z ih y
11 8 10 eqeq12d x y z bra x z = bra y z z ih x = z ih y
12 6 11 syl5ib x y z bra x = bra y z ih x = z ih y
13 12 ralrimdva x y bra x = bra y z z ih x = z ih y
14 hial2eq2 x y z z ih x = z ih y x = y
15 13 14 sylibd x y bra x = bra y x = y
16 15 rgen2 x y bra x = bra y x = y
17 dff1o6 bra : 1-1 onto LinFn ContFn bra Fn ran bra = LinFn ContFn x y bra x = bra y x = y
18 4 5 16 17 mpbir3an bra : 1-1 onto LinFn ContFn