Metamath Proof Explorer


Theorem brab

Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999)

Ref Expression
Hypotheses opelopab.1 A V
opelopab.2 B V
opelopab.3 x = A φ ψ
opelopab.4 y = B ψ χ
brab.5 R = x y | φ
Assertion brab A R B χ

Proof

Step Hyp Ref Expression
1 opelopab.1 A V
2 opelopab.2 B V
3 opelopab.3 x = A φ ψ
4 opelopab.4 y = B ψ χ
5 brab.5 R = x y | φ
6 3 4 5 brabg A V B V A R B χ
7 1 2 6 mp2an A R B χ