Metamath Proof Explorer


Theorem brab1

Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)

Ref Expression
Assertion brab1 x R A x z | z R A

Proof

Step Hyp Ref Expression
1 breq1 z = y z R A y R A
2 breq1 y = x y R A x R A
3 1 2 sbcie2g x V [˙x / z]˙ z R A x R A
4 3 elv [˙x / z]˙ z R A x R A
5 df-sbc [˙x / z]˙ z R A x z | z R A
6 4 5 bitr3i x R A x z | z R A