Metamath Proof Explorer


Theorem bracnlnval

Description: The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnlnval T LinFn ContFn T = bra ι y | x T x = x ih y

Proof

Step Hyp Ref Expression
1 cnvbraval T LinFn ContFn bra -1 T = ι y | x T x = x ih y
2 cnvbracl T LinFn ContFn bra -1 T
3 1 2 eqeltrrd T LinFn ContFn ι y | x T x = x ih y
4 bra11 bra : 1-1 onto LinFn ContFn
5 f1ocnvfvb bra : 1-1 onto LinFn ContFn ι y | x T x = x ih y T LinFn ContFn bra ι y | x T x = x ih y = T bra -1 T = ι y | x T x = x ih y
6 4 5 mp3an1 ι y | x T x = x ih y T LinFn ContFn bra ι y | x T x = x ih y = T bra -1 T = ι y | x T x = x ih y
7 3 6 mpancom T LinFn ContFn bra ι y | x T x = x ih y = T bra -1 T = ι y | x T x = x ih y
8 1 7 mpbird T LinFn ContFn bra ι y | x T x = x ih y = T
9 8 eqcomd T LinFn ContFn T = bra ι y | x T x = x ih y