Metamath Proof Explorer


Theorem bracnvbra

Description: The bra of the converse bra of a continuous linear functional. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bracnvbra T LinFn ContFn bra bra -1 T = T

Proof

Step Hyp Ref Expression
1 bra11 bra : 1-1 onto LinFn ContFn
2 f1ocnvfv2 bra : 1-1 onto LinFn ContFn T LinFn ContFn bra bra -1 T = T
3 1 2 mpan T LinFn ContFn bra bra -1 T = T