Metamath Proof Explorer


Theorem brafnmul

Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafnmul A B bra A B = A · fn bra B

Proof

Step Hyp Ref Expression
1 hvmulcl A B A B
2 brafval A B bra A B = x x ih A B
3 1 2 syl A B bra A B = x x ih A B
4 cjcl A A
5 brafn B bra B :
6 hfmmval A bra B : A · fn bra B = x A bra B x
7 4 5 6 syl2an A B A · fn bra B = x A bra B x
8 his5 A x B x ih A B = A x ih B
9 8 3expa A x B x ih A B = A x ih B
10 9 an32s A B x x ih A B = A x ih B
11 braval B x bra B x = x ih B
12 11 adantll A B x bra B x = x ih B
13 12 oveq2d A B x A bra B x = A x ih B
14 10 13 eqtr4d A B x x ih A B = A bra B x
15 14 mpteq2dva A B x x ih A B = x A bra B x
16 7 15 eqtr4d A B A · fn bra B = x x ih A B
17 3 16 eqtr4d A B bra A B = A · fn bra B