Metamath Proof Explorer


Theorem branmfn

Description: The norm of the bra function. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion branmfn A norm fn bra A = norm A

Proof

Step Hyp Ref Expression
1 2fveq3 A = 0 norm fn bra A = norm fn bra 0
2 fveq2 A = 0 norm A = norm 0
3 1 2 eqeq12d A = 0 norm fn bra A = norm A norm fn bra 0 = norm 0
4 brafn A bra A :
5 nmfnval bra A : norm fn bra A = sup x | y norm y 1 x = bra A y * <
6 4 5 syl A norm fn bra A = sup x | y norm y 1 x = bra A y * <
7 6 adantr A A 0 norm fn bra A = sup x | y norm y 1 x = bra A y * <
8 nmfnsetre bra A : x | y norm y 1 x = bra A y
9 4 8 syl A x | y norm y 1 x = bra A y
10 ressxr *
11 9 10 sstrdi A x | y norm y 1 x = bra A y *
12 normcl A norm A
13 12 rexrd A norm A *
14 11 13 jca A x | y norm y 1 x = bra A y * norm A *
15 14 adantr A A 0 x | y norm y 1 x = bra A y * norm A *
16 vex z V
17 eqeq1 x = z x = bra A y z = bra A y
18 17 anbi2d x = z norm y 1 x = bra A y norm y 1 z = bra A y
19 18 rexbidv x = z y norm y 1 x = bra A y y norm y 1 z = bra A y
20 16 19 elab z x | y norm y 1 x = bra A y y norm y 1 z = bra A y
21 id z = bra A y z = bra A y
22 braval A y bra A y = y ih A
23 22 fveq2d A y bra A y = y ih A
24 23 adantr A y norm y 1 bra A y = y ih A
25 21 24 sylan9eqr A y norm y 1 z = bra A y z = y ih A
26 bcs2 y A norm y 1 y ih A norm A
27 26 3expa y A norm y 1 y ih A norm A
28 27 ancom1s A y norm y 1 y ih A norm A
29 28 adantr A y norm y 1 z = bra A y y ih A norm A
30 25 29 eqbrtrd A y norm y 1 z = bra A y z norm A
31 30 exp41 A y norm y 1 z = bra A y z norm A
32 31 imp4a A y norm y 1 z = bra A y z norm A
33 32 rexlimdv A y norm y 1 z = bra A y z norm A
34 33 imp A y norm y 1 z = bra A y z norm A
35 20 34 sylan2b A z x | y norm y 1 x = bra A y z norm A
36 35 ralrimiva A z x | y norm y 1 x = bra A y z norm A
37 36 adantr A A 0 z x | y norm y 1 x = bra A y z norm A
38 12 recnd A norm A
39 38 adantr A A 0 norm A
40 normne0 A norm A 0 A 0
41 40 biimpar A A 0 norm A 0
42 39 41 reccld A A 0 1 norm A
43 simpl A A 0 A
44 hvmulcl 1 norm A A 1 norm A A
45 42 43 44 syl2anc A A 0 1 norm A A
46 norm1 A A 0 norm 1 norm A A = 1
47 1le1 1 1
48 46 47 eqbrtrdi A A 0 norm 1 norm A A 1
49 ax-his3 1 norm A A A 1 norm A A ih A = 1 norm A A ih A
50 42 43 43 49 syl3anc A A 0 1 norm A A ih A = 1 norm A A ih A
51 12 adantr A A 0 norm A
52 51 41 rereccld A A 0 1 norm A
53 hiidrcl A A ih A
54 53 adantr A A 0 A ih A
55 52 54 remulcld A A 0 1 norm A A ih A
56 50 55 eqeltrd A A 0 1 norm A A ih A
57 normgt0 A A 0 0 < norm A
58 57 biimpa A A 0 0 < norm A
59 51 58 recgt0d A A 0 0 < 1 norm A
60 0re 0
61 ltle 0 1 norm A 0 < 1 norm A 0 1 norm A
62 60 61 mpan 1 norm A 0 < 1 norm A 0 1 norm A
63 52 59 62 sylc A A 0 0 1 norm A
64 hiidge0 A 0 A ih A
65 64 adantr A A 0 0 A ih A
66 52 54 63 65 mulge0d A A 0 0 1 norm A A ih A
67 66 50 breqtrrd A A 0 0 1 norm A A ih A
68 56 67 absidd A A 0 1 norm A A ih A = 1 norm A A ih A
69 39 41 recid2d A A 0 1 norm A norm A = 1
70 69 oveq2d A A 0 norm A 1 norm A norm A = norm A 1
71 39 42 39 mul12d A A 0 norm A 1 norm A norm A = 1 norm A norm A norm A
72 38 sqvald A norm A 2 = norm A norm A
73 normsq A norm A 2 = A ih A
74 72 73 eqtr3d A norm A norm A = A ih A
75 74 adantr A A 0 norm A norm A = A ih A
76 75 oveq2d A A 0 1 norm A norm A norm A = 1 norm A A ih A
77 71 76 eqtrd A A 0 norm A 1 norm A norm A = 1 norm A A ih A
78 38 mulid1d A norm A 1 = norm A
79 78 adantr A A 0 norm A 1 = norm A
80 70 77 79 3eqtr3rd A A 0 norm A = 1 norm A A ih A
81 50 68 80 3eqtr4rd A A 0 norm A = 1 norm A A ih A
82 fveq2 y = 1 norm A A norm y = norm 1 norm A A
83 82 breq1d y = 1 norm A A norm y 1 norm 1 norm A A 1
84 fvoveq1 y = 1 norm A A y ih A = 1 norm A A ih A
85 84 eqeq2d y = 1 norm A A norm A = y ih A norm A = 1 norm A A ih A
86 83 85 anbi12d y = 1 norm A A norm y 1 norm A = y ih A norm 1 norm A A 1 norm A = 1 norm A A ih A
87 86 rspcev 1 norm A A norm 1 norm A A 1 norm A = 1 norm A A ih A y norm y 1 norm A = y ih A
88 45 48 81 87 syl12anc A A 0 y norm y 1 norm A = y ih A
89 23 eqeq2d A y norm A = bra A y norm A = y ih A
90 89 anbi2d A y norm y 1 norm A = bra A y norm y 1 norm A = y ih A
91 90 rexbidva A y norm y 1 norm A = bra A y y norm y 1 norm A = y ih A
92 91 adantr A A 0 y norm y 1 norm A = bra A y y norm y 1 norm A = y ih A
93 88 92 mpbird A A 0 y norm y 1 norm A = bra A y
94 eqeq1 x = norm A x = bra A y norm A = bra A y
95 94 anbi2d x = norm A norm y 1 x = bra A y norm y 1 norm A = bra A y
96 95 rexbidv x = norm A y norm y 1 x = bra A y y norm y 1 norm A = bra A y
97 39 93 96 elabd A A 0 norm A x | y norm y 1 x = bra A y
98 breq2 w = norm A z < w z < norm A
99 98 rspcev norm A x | y norm y 1 x = bra A y z < norm A w x | y norm y 1 x = bra A y z < w
100 97 99 sylan A A 0 z < norm A w x | y norm y 1 x = bra A y z < w
101 100 adantlr A A 0 z z < norm A w x | y norm y 1 x = bra A y z < w
102 101 ex A A 0 z z < norm A w x | y norm y 1 x = bra A y z < w
103 102 ralrimiva A A 0 z z < norm A w x | y norm y 1 x = bra A y z < w
104 supxr2 x | y norm y 1 x = bra A y * norm A * z x | y norm y 1 x = bra A y z norm A z z < norm A w x | y norm y 1 x = bra A y z < w sup x | y norm y 1 x = bra A y * < = norm A
105 15 37 103 104 syl12anc A A 0 sup x | y norm y 1 x = bra A y * < = norm A
106 7 105 eqtrd A A 0 norm fn bra A = norm A
107 nmfn0 norm fn × 0 = 0
108 bra0 bra 0 = × 0
109 108 fveq2i norm fn bra 0 = norm fn × 0
110 norm0 norm 0 = 0
111 107 109 110 3eqtr4i norm fn bra 0 = norm 0
112 111 a1i A norm fn bra 0 = norm 0
113 3 106 112 pm2.61ne A norm fn bra A = norm A