Metamath Proof Explorer


Theorem brcici

Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020)

Ref Expression
Hypotheses cic.i I = Iso C
cic.b B = Base C
cic.c φ C Cat
cic.x φ X B
cic.y φ Y B
cic.f φ F X I Y
Assertion brcici φ X 𝑐 C Y

Proof

Step Hyp Ref Expression
1 cic.i I = Iso C
2 cic.b B = Base C
3 cic.c φ C Cat
4 cic.x φ X B
5 cic.y φ Y B
6 cic.f φ F X I Y
7 eleq1 f = F f X I Y F X I Y
8 7 spcegv F X I Y F X I Y f f X I Y
9 6 6 8 sylc φ f f X I Y
10 1 2 3 4 5 cic φ X 𝑐 C Y f f X I Y
11 9 10 mpbird φ X 𝑐 C Y