Metamath Proof Explorer


Theorem brcnvg

Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 10-Oct-2005)

Ref Expression
Assertion brcnvg A C B D A R -1 B B R A

Proof

Step Hyp Ref Expression
1 breq2 x = A y R x y R A
2 breq1 y = B y R A B R A
3 df-cnv R -1 = x y | y R x
4 1 2 3 brabg A C B D A R -1 B B R A