Metamath Proof Explorer


Theorem brcnvin

Description: Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024)

Ref Expression
Assertion brcnvin A V B W A R S -1 B A R B B S A

Proof

Step Hyp Ref Expression
1 brin A R S -1 B A R B A S -1 B
2 brcnvg A V B W A S -1 B B S A
3 2 anbi2d A V B W A R B A S -1 B A R B B S A
4 1 3 bitrid A V B W A R S -1 B A R B B S A