Metamath Proof Explorer


Theorem brcodir

Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion brcodir A V B W A R -1 R B z A R z B R z

Proof

Step Hyp Ref Expression
1 brcog A V B W A R -1 R B z A R z z R -1 B
2 vex z V
3 brcnvg z V B W z R -1 B B R z
4 2 3 mpan B W z R -1 B B R z
5 4 anbi2d B W A R z z R -1 B A R z B R z
6 5 adantl A V B W A R z z R -1 B A R z B R z
7 6 exbidv A V B W z A R z z R -1 B z A R z B R z
8 1 7 bitrd A V B W A R -1 R B z A R z B R z