Metamath Proof Explorer


Theorem brcog

Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015)

Ref Expression
Assertion brcog A V B W A C D B x A D x x C B

Proof

Step Hyp Ref Expression
1 breq1 y = A y D x A D x
2 breq2 z = B x C z x C B
3 1 2 bi2anan9 y = A z = B y D x x C z A D x x C B
4 3 exbidv y = A z = B x y D x x C z x A D x x C B
5 df-co C D = y z | x y D x x C z
6 4 5 brabga A V B W A C D B x A D x x C B