Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brcog
Next ⟩
opelco2g
Metamath Proof Explorer
Ascii
Unicode
Theorem
brcog
Description:
Ordered pair membership in a composition.
(Contributed by
NM
, 24-Feb-2015)
Ref
Expression
Assertion
brcog
⊢
A
∈
V
∧
B
∈
W
→
A
C
∘
D
B
↔
∃
x
A
D
x
∧
x
C
B
Proof
Step
Hyp
Ref
Expression
1
breq1
⊢
y
=
A
→
y
D
x
↔
A
D
x
2
breq2
⊢
z
=
B
→
x
C
z
↔
x
C
B
3
1
2
bi2anan9
⊢
y
=
A
∧
z
=
B
→
y
D
x
∧
x
C
z
↔
A
D
x
∧
x
C
B
4
3
exbidv
⊢
y
=
A
∧
z
=
B
→
∃
x
y
D
x
∧
x
C
z
↔
∃
x
A
D
x
∧
x
C
B
5
df-co
⊢
C
∘
D
=
y
z
|
∃
x
y
D
x
∧
x
C
z
6
4
5
brabga
⊢
A
∈
V
∧
B
∈
W
→
A
C
∘
D
B
↔
∃
x
A
D
x
∧
x
C
B