Metamath Proof Explorer


Theorem brcogw

Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Assertion brcogw A V B W X Z A D X X C B A C D B

Proof

Step Hyp Ref Expression
1 3simpa A V B W X Z A V B W
2 breq2 x = X A D x A D X
3 breq1 x = X x C B X C B
4 2 3 anbi12d x = X A D x x C B A D X X C B
5 4 spcegv X Z A D X X C B x A D x x C B
6 5 imp X Z A D X X C B x A D x x C B
7 6 3ad2antl3 A V B W X Z A D X X C B x A D x x C B
8 brcog A V B W A C D B x A D x x C B
9 8 biimpar A V B W x A D x x C B A C D B
10 1 7 9 syl2an2r A V B W X Z A D X X C B A C D B