Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brcogw
Next ⟩
eqbrrdva
Metamath Proof Explorer
Ascii
Unicode
Theorem
brcogw
Description:
Ordered pair membership in a composition.
(Contributed by
Thierry Arnoux
, 14-Jan-2018)
Ref
Expression
Assertion
brcogw
⊢
A
∈
V
∧
B
∈
W
∧
X
∈
Z
∧
A
D
X
∧
X
C
B
→
A
C
∘
D
B
Proof
Step
Hyp
Ref
Expression
1
3simpa
⊢
A
∈
V
∧
B
∈
W
∧
X
∈
Z
→
A
∈
V
∧
B
∈
W
2
breq2
⊢
x
=
X
→
A
D
x
↔
A
D
X
3
breq1
⊢
x
=
X
→
x
C
B
↔
X
C
B
4
2
3
anbi12d
⊢
x
=
X
→
A
D
x
∧
x
C
B
↔
A
D
X
∧
X
C
B
5
4
spcegv
⊢
X
∈
Z
→
A
D
X
∧
X
C
B
→
∃
x
A
D
x
∧
x
C
B
6
5
imp
⊢
X
∈
Z
∧
A
D
X
∧
X
C
B
→
∃
x
A
D
x
∧
x
C
B
7
6
3ad2antl3
⊢
A
∈
V
∧
B
∈
W
∧
X
∈
Z
∧
A
D
X
∧
X
C
B
→
∃
x
A
D
x
∧
x
C
B
8
brcog
⊢
A
∈
V
∧
B
∈
W
→
A
C
∘
D
B
↔
∃
x
A
D
x
∧
x
C
B
9
8
biimpar
⊢
A
∈
V
∧
B
∈
W
∧
∃
x
A
D
x
∧
x
C
B
→
A
C
∘
D
B
10
1
7
9
syl2an2r
⊢
A
∈
V
∧
B
∈
W
∧
X
∈
Z
∧
A
D
X
∧
X
C
B
→
A
C
∘
D
B