Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
brdif
Next ⟩
sbcbr123
Metamath Proof Explorer
Ascii
Unicode
Theorem
brdif
Description:
The difference of two binary relations.
(Contributed by
Scott Fenton
, 11-Apr-2011)
Ref
Expression
Assertion
brdif
⊢
A
R
∖
S
B
↔
A
R
B
∧
¬
A
S
B
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
A
B
∈
R
∖
S
↔
A
B
∈
R
∧
¬
A
B
∈
S
2
df-br
⊢
A
R
∖
S
B
↔
A
B
∈
R
∖
S
3
df-br
⊢
A
R
B
↔
A
B
∈
R
4
df-br
⊢
A
S
B
↔
A
B
∈
S
5
4
notbii
⊢
¬
A
S
B
↔
¬
A
B
∈
S
6
3
5
anbi12i
⊢
A
R
B
∧
¬
A
S
B
↔
A
B
∈
R
∧
¬
A
B
∈
S
7
1
2
6
3bitr4i
⊢
A
R
∖
S
B
↔
A
R
B
∧
¬
A
S
B