Metamath Proof Explorer


Theorem brdif

Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011)

Ref Expression
Assertion brdif A R S B A R B ¬ A S B

Proof

Step Hyp Ref Expression
1 eldif A B R S A B R ¬ A B S
2 df-br A R S B A B R S
3 df-br A R B A B R
4 df-br A S B A B S
5 4 notbii ¬ A S B ¬ A B S
6 3 5 anbi12i A R B ¬ A S B A B R ¬ A B S
7 1 2 6 3bitr4i A R S B A R B ¬ A S B