Metamath Proof Explorer


Theorem brdom2

Description: Dominance in terms of strict dominance and equinumerosity. Theorem 22(iv) of Suppes p. 97. (Contributed by NM, 17-Jun-1998)

Ref Expression
Assertion brdom2 A B A B A B

Proof

Step Hyp Ref Expression
1 dfdom2 =
2 1 eleq2i A B A B
3 df-br A B A B
4 df-br A B A B
5 df-br A B A B
6 4 5 orbi12i A B A B A B A B
7 elun A B A B A B
8 6 7 bitr4i A B A B A B
9 2 3 8 3bitr4i A B A B A B