Metamath Proof Explorer


Theorem brdomg

Description: Dominance relation. (Contributed by NM, 15-Jun-1998)

Ref Expression
Assertion brdomg B C A B f f : A 1-1 B

Proof

Step Hyp Ref Expression
1 f1eq2 x = A f : x 1-1 y f : A 1-1 y
2 1 exbidv x = A f f : x 1-1 y f f : A 1-1 y
3 f1eq3 y = B f : A 1-1 y f : A 1-1 B
4 3 exbidv y = B f f : A 1-1 y f f : A 1-1 B
5 df-dom = x y | f f : x 1-1 y
6 2 4 5 brabg A V B C A B f f : A 1-1 B
7 6 ex A V B C A B f f : A 1-1 B
8 reldom Rel
9 8 brrelex1i A B A V
10 f1f f : A 1-1 B f : A B
11 fdm f : A B dom f = A
12 vex f V
13 12 dmex dom f V
14 11 13 eqeltrrdi f : A B A V
15 10 14 syl f : A 1-1 B A V
16 15 exlimiv f f : A 1-1 B A V
17 9 16 pm5.21ni ¬ A V A B f f : A 1-1 B
18 17 a1d ¬ A V B C A B f f : A 1-1 B
19 7 18 pm2.61i B C A B f f : A 1-1 B