Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
brdomi
Next ⟩
brdom
Metamath Proof Explorer
Ascii
Unicode
Theorem
brdomi
Description:
Dominance relation.
(Contributed by
Mario Carneiro
, 26-Apr-2015)
Ref
Expression
Assertion
brdomi
⊢
A
≼
B
→
∃
f
f
:
A
⟶
1-1
B
Proof
Step
Hyp
Ref
Expression
1
reldom
⊢
Rel
⁡
≼
2
1
brrelex2i
⊢
A
≼
B
→
B
∈
V
3
brdomg
⊢
B
∈
V
→
A
≼
B
↔
∃
f
f
:
A
⟶
1-1
B
4
2
3
syl
⊢
A
≼
B
→
A
≼
B
↔
∃
f
f
:
A
⟶
1-1
B
5
4
ibi
⊢
A
≼
B
→
∃
f
f
:
A
⟶
1-1
B