Metamath Proof Explorer


Theorem breldm

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995)

Ref Expression
Hypotheses opeldm.1 A V
opeldm.2 B V
Assertion breldm A R B A dom R

Proof

Step Hyp Ref Expression
1 opeldm.1 A V
2 opeldm.2 B V
3 df-br A R B A B R
4 1 2 opeldm A B R A dom R
5 3 4 sylbi A R B A dom R