Metamath Proof Explorer


Theorem brelrng

Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008)

Ref Expression
Assertion brelrng A F B G A C B B ran C

Proof

Step Hyp Ref Expression
1 brcnvg B G A F B C -1 A A C B
2 1 ancoms A F B G B C -1 A A C B
3 2 biimp3ar A F B G A C B B C -1 A
4 breldmg B G A F B C -1 A B dom C -1
5 4 3com12 A F B G B C -1 A B dom C -1
6 3 5 syld3an3 A F B G A C B B dom C -1
7 df-rn ran C = dom C -1
8 6 7 eleqtrrdi A F B G A C B B ran C