Metamath Proof Explorer


Theorem breng

Description: Equinumerosity relation. This variation of bren does not require the Axiom of Union. (Contributed by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion breng A V B W A B f f : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 f1oeq2 x = A f : x 1-1 onto y f : A 1-1 onto y
2 1 exbidv x = A f f : x 1-1 onto y f f : A 1-1 onto y
3 f1oeq3 y = B f : A 1-1 onto y f : A 1-1 onto B
4 3 exbidv y = B f f : A 1-1 onto y f f : A 1-1 onto B
5 df-en = x y | f f : x 1-1 onto y
6 2 4 5 brabg A V B W A B f f : A 1-1 onto B