Step |
Hyp |
Ref |
Expression |
1 |
|
breprexp.n |
|
2 |
|
breprexp.s |
|
3 |
|
breprexp.z |
|
4 |
|
breprexp.h |
|
5 |
|
nn0ssre |
|
6 |
5
|
a1i |
|
7 |
6
|
sselda |
|
8 |
|
leid |
|
9 |
7 8
|
syl |
|
10 |
|
breq1 |
|
11 |
|
oveq2 |
|
12 |
11
|
prodeq1d |
|
13 |
|
oveq1 |
|
14 |
13
|
oveq2d |
|
15 |
|
fveq2 |
|
16 |
15
|
oveqd |
|
17 |
11
|
prodeq1d |
|
18 |
17
|
oveq1d |
|
19 |
18
|
adantr |
|
20 |
16 19
|
sumeq12dv |
|
21 |
20
|
adantr |
|
22 |
14 21
|
sumeq12dv |
|
23 |
12 22
|
eqeq12d |
|
24 |
10 23
|
imbi12d |
|
25 |
|
breq1 |
|
26 |
|
oveq2 |
|
27 |
26
|
prodeq1d |
|
28 |
|
oveq1 |
|
29 |
28
|
oveq2d |
|
30 |
|
fveq2 |
|
31 |
30
|
oveqd |
|
32 |
26
|
prodeq1d |
|
33 |
32
|
oveq1d |
|
34 |
33
|
adantr |
|
35 |
31 34
|
sumeq12dv |
|
36 |
35
|
adantr |
|
37 |
29 36
|
sumeq12dv |
|
38 |
27 37
|
eqeq12d |
|
39 |
25 38
|
imbi12d |
|
40 |
|
breq1 |
|
41 |
|
oveq2 |
|
42 |
41
|
prodeq1d |
|
43 |
|
oveq1 |
|
44 |
43
|
oveq2d |
|
45 |
|
fveq2 |
|
46 |
45
|
oveqd |
|
47 |
41
|
prodeq1d |
|
48 |
47
|
oveq1d |
|
49 |
48
|
adantr |
|
50 |
46 49
|
sumeq12dv |
|
51 |
50
|
adantr |
|
52 |
44 51
|
sumeq12dv |
|
53 |
42 52
|
eqeq12d |
|
54 |
40 53
|
imbi12d |
|
55 |
|
breq1 |
|
56 |
|
oveq2 |
|
57 |
56
|
prodeq1d |
|
58 |
|
oveq1 |
|
59 |
58
|
oveq2d |
|
60 |
|
fveq2 |
|
61 |
60
|
oveqd |
|
62 |
56
|
prodeq1d |
|
63 |
62
|
oveq1d |
|
64 |
63
|
adantr |
|
65 |
61 64
|
sumeq12dv |
|
66 |
65
|
adantr |
|
67 |
59 66
|
sumeq12dv |
|
68 |
57 67
|
eqeq12d |
|
69 |
55 68
|
imbi12d |
|
70 |
|
0nn0 |
|
71 |
|
fz1ssnn |
|
72 |
71
|
a1i |
|
73 |
|
0zd |
|
74 |
72 73 1
|
repr0 |
|
75 |
|
eqid |
|
76 |
75
|
iftruei |
|
77 |
74 76
|
eqtrdi |
|
78 |
|
snfi |
|
79 |
77 78
|
eqeltrdi |
|
80 |
|
fzo0 |
|
81 |
80
|
prodeq1i |
|
82 |
|
prod0 |
|
83 |
81 82
|
eqtri |
|
84 |
83
|
a1i |
|
85 |
|
exp0 |
|
86 |
3 85
|
syl |
|
87 |
84 86
|
oveq12d |
|
88 |
|
ax-1cn |
|
89 |
88
|
mulid1i |
|
90 |
87 89
|
eqtrdi |
|
91 |
90 88
|
eqeltrdi |
|
92 |
91
|
adantr |
|
93 |
79 92
|
fsumcl |
|
94 |
|
oveq2 |
|
95 |
|
simpl |
|
96 |
95
|
oveq2d |
|
97 |
96
|
oveq2d |
|
98 |
94 97
|
sumeq12dv |
|
99 |
98
|
sumsn |
|
100 |
70 93 99
|
sylancr |
|
101 |
77
|
sumeq1d |
|
102 |
|
0ex |
|
103 |
80
|
prodeq1i |
|
104 |
|
prod0 |
|
105 |
103 104
|
eqtri |
|
106 |
105
|
a1i |
|
107 |
106 88
|
eqeltrdi |
|
108 |
86 88
|
eqeltrdi |
|
109 |
107 108
|
mulcld |
|
110 |
|
fveq1 |
|
111 |
110
|
fveq2d |
|
112 |
111
|
ralrimivw |
|
113 |
112
|
prodeq2d |
|
114 |
113
|
oveq1d |
|
115 |
114
|
sumsn |
|
116 |
102 109 115
|
sylancr |
|
117 |
106 86
|
oveq12d |
|
118 |
117 87 90
|
3eqtr2d |
|
119 |
116 118
|
eqtrd |
|
120 |
100 101 119
|
3eqtrd |
|
121 |
1
|
nn0cnd |
|
122 |
121
|
mul02d |
|
123 |
122
|
oveq2d |
|
124 |
|
fz0sn |
|
125 |
123 124
|
eqtrdi |
|
126 |
125
|
sumeq1d |
|
127 |
80
|
prodeq1i |
|
128 |
|
prod0 |
|
129 |
127 128
|
eqtri |
|
130 |
129
|
a1i |
|
131 |
120 126 130
|
3eqtr4rd |
|
132 |
131
|
a1d |
|
133 |
|
simpll |
|
134 |
|
simplr |
|
135 |
|
oveq2 |
|
136 |
|
oveq2 |
|
137 |
136
|
oveq2d |
|
138 |
137
|
adantr |
|
139 |
135 138
|
sumeq12dv |
|
140 |
139
|
cbvsumv |
|
141 |
140
|
eqeq2i |
|
142 |
|
simpl |
|
143 |
142
|
fveq2d |
|
144 |
143
|
fveq1d |
|
145 |
144
|
oveq1d |
|
146 |
145
|
sumeq2dv |
|
147 |
146
|
cbvprodv |
|
148 |
|
fveq2 |
|
149 |
|
oveq2 |
|
150 |
148 149
|
oveq12d |
|
151 |
150
|
cbvsumv |
|
152 |
151
|
a1i |
|
153 |
152
|
prodeq2i |
|
154 |
147 153
|
eqtri |
|
155 |
|
fveq2 |
|
156 |
|
fveq2 |
|
157 |
155 156
|
fveq12d |
|
158 |
157
|
cbvprodv |
|
159 |
158
|
oveq1i |
|
160 |
159
|
a1i |
|
161 |
160
|
sumeq2i |
|
162 |
|
simpl |
|
163 |
162
|
fveq1d |
|
164 |
163
|
fveq2d |
|
165 |
164
|
prodeq2dv |
|
166 |
165
|
oveq1d |
|
167 |
166
|
cbvsumv |
|
168 |
161 167
|
eqtri |
|
169 |
168
|
a1i |
|
170 |
169
|
sumeq2i |
|
171 |
154 170
|
eqeq12i |
|
172 |
141 171
|
bitri |
|
173 |
172
|
imbi2i |
|
174 |
134 173
|
sylib |
|
175 |
|
simpr |
|
176 |
1
|
ad3antrrr |
|
177 |
2
|
ad3antrrr |
|
178 |
3
|
ad3antrrr |
|
179 |
4
|
ad3antrrr |
|
180 |
|
simpllr |
|
181 |
|
simpr |
|
182 |
5 180
|
sselid |
|
183 |
|
1red |
|
184 |
182 183
|
readdcld |
|
185 |
5 177
|
sselid |
|
186 |
182
|
ltp1d |
|
187 |
182 184 186
|
ltled |
|
188 |
182 184 185 187 181
|
letrd |
|
189 |
|
simplr |
|
190 |
189 173
|
sylibr |
|
191 |
188 190
|
mpd |
|
192 |
176 177 178 179 180 181 191
|
breprexplemc |
|
193 |
133 174 175 192
|
syl21anc |
|
194 |
193
|
ex |
|
195 |
24 39 54 69 132 194
|
nn0indd |
|
196 |
9 195
|
mpd |
|
197 |
2 196
|
mpdan |
|