Metamath Proof Explorer


Theorem breprexp

Description: Express the S th power of the finite series in terms of the number of representations of integers m as sums of S terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in L . See breprexpnat for the simple case presented in the proposition of Nathanson p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021)

Ref Expression
Hypotheses breprexp.n φ N 0
breprexp.s φ S 0
breprexp.z φ Z
breprexp.h φ L : 0 ..^ S
Assertion breprexp φ a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m

Proof

Step Hyp Ref Expression
1 breprexp.n φ N 0
2 breprexp.s φ S 0
3 breprexp.z φ Z
4 breprexp.h φ L : 0 ..^ S
5 nn0ssre 0
6 5 a1i φ 0
7 6 sselda φ S 0 S
8 leid S S S
9 7 8 syl φ S 0 S S
10 breq1 t = 0 t S 0 S
11 oveq2 t = 0 0 ..^ t = 0 ..^ 0
12 11 prodeq1d t = 0 a 0 ..^ t b = 1 N L a b Z b = a 0 ..^ 0 b = 1 N L a b Z b
13 oveq1 t = 0 t N = 0 N
14 13 oveq2d t = 0 0 t N = 0 0 N
15 fveq2 t = 0 repr t = repr 0
16 15 oveqd t = 0 1 N repr t m = 1 N repr 0 m
17 11 prodeq1d t = 0 a 0 ..^ t L a c a = a 0 ..^ 0 L a c a
18 17 oveq1d t = 0 a 0 ..^ t L a c a Z m = a 0 ..^ 0 L a c a Z m
19 18 adantr t = 0 c 1 N repr t m a 0 ..^ t L a c a Z m = a 0 ..^ 0 L a c a Z m
20 16 19 sumeq12dv t = 0 c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
21 20 adantr t = 0 m 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
22 14 21 sumeq12dv t = 0 m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
23 12 22 eqeq12d t = 0 a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m a 0 ..^ 0 b = 1 N L a b Z b = m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
24 10 23 imbi12d t = 0 t S a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m 0 S a 0 ..^ 0 b = 1 N L a b Z b = m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
25 breq1 t = s t S s S
26 oveq2 t = s 0 ..^ t = 0 ..^ s
27 26 prodeq1d t = s a 0 ..^ t b = 1 N L a b Z b = a 0 ..^ s b = 1 N L a b Z b
28 oveq1 t = s t N = s N
29 28 oveq2d t = s 0 t N = 0 s N
30 fveq2 t = s repr t = repr s
31 30 oveqd t = s 1 N repr t m = 1 N repr s m
32 26 prodeq1d t = s a 0 ..^ t L a c a = a 0 ..^ s L a c a
33 32 oveq1d t = s a 0 ..^ t L a c a Z m = a 0 ..^ s L a c a Z m
34 33 adantr t = s c 1 N repr t m a 0 ..^ t L a c a Z m = a 0 ..^ s L a c a Z m
35 31 34 sumeq12dv t = s c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr s m a 0 ..^ s L a c a Z m
36 35 adantr t = s m 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr s m a 0 ..^ s L a c a Z m
37 29 36 sumeq12dv t = s m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
38 27 37 eqeq12d t = s a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
39 25 38 imbi12d t = s t S a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
40 breq1 t = s + 1 t S s + 1 S
41 oveq2 t = s + 1 0 ..^ t = 0 ..^ s + 1
42 41 prodeq1d t = s + 1 a 0 ..^ t b = 1 N L a b Z b = a 0 ..^ s + 1 b = 1 N L a b Z b
43 oveq1 t = s + 1 t N = s + 1 N
44 43 oveq2d t = s + 1 0 t N = 0 s + 1 N
45 fveq2 t = s + 1 repr t = repr s + 1
46 45 oveqd t = s + 1 1 N repr t m = 1 N repr s + 1 m
47 41 prodeq1d t = s + 1 a 0 ..^ t L a c a = a 0 ..^ s + 1 L a c a
48 47 oveq1d t = s + 1 a 0 ..^ t L a c a Z m = a 0 ..^ s + 1 L a c a Z m
49 48 adantr t = s + 1 c 1 N repr t m a 0 ..^ t L a c a Z m = a 0 ..^ s + 1 L a c a Z m
50 46 49 sumeq12dv t = s + 1 c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
51 50 adantr t = s + 1 m 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
52 44 51 sumeq12dv t = s + 1 m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
53 42 52 eqeq12d t = s + 1 a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m a 0 ..^ s + 1 b = 1 N L a b Z b = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
54 40 53 imbi12d t = s + 1 t S a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m s + 1 S a 0 ..^ s + 1 b = 1 N L a b Z b = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
55 breq1 t = S t S S S
56 oveq2 t = S 0 ..^ t = 0 ..^ S
57 56 prodeq1d t = S a 0 ..^ t b = 1 N L a b Z b = a 0 ..^ S b = 1 N L a b Z b
58 oveq1 t = S t N = S N
59 58 oveq2d t = S 0 t N = 0 S N
60 fveq2 t = S repr t = repr S
61 60 oveqd t = S 1 N repr t m = 1 N repr S m
62 56 prodeq1d t = S a 0 ..^ t L a c a = a 0 ..^ S L a c a
63 62 oveq1d t = S a 0 ..^ t L a c a Z m = a 0 ..^ S L a c a Z m
64 63 adantr t = S c 1 N repr t m a 0 ..^ t L a c a Z m = a 0 ..^ S L a c a Z m
65 61 64 sumeq12dv t = S c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr S m a 0 ..^ S L a c a Z m
66 65 adantr t = S m 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = c 1 N repr S m a 0 ..^ S L a c a Z m
67 59 66 sumeq12dv t = S m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m
68 57 67 eqeq12d t = S a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m
69 55 68 imbi12d t = S t S a 0 ..^ t b = 1 N L a b Z b = m = 0 t N c 1 N repr t m a 0 ..^ t L a c a Z m S S a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m
70 0nn0 0 0
71 fz1ssnn 1 N
72 71 a1i φ 1 N
73 0zd φ 0
74 72 73 1 repr0 φ 1 N repr 0 0 = if 0 = 0
75 eqid 0 = 0
76 75 iftruei if 0 = 0 =
77 74 76 eqtrdi φ 1 N repr 0 0 =
78 snfi Fin
79 77 78 eqeltrdi φ 1 N repr 0 0 Fin
80 fzo0 0 ..^ 0 =
81 80 prodeq1i a 0 ..^ 0 L a c a = a L a c a
82 prod0 a L a c a = 1
83 81 82 eqtri a 0 ..^ 0 L a c a = 1
84 83 a1i φ a 0 ..^ 0 L a c a = 1
85 exp0 Z Z 0 = 1
86 3 85 syl φ Z 0 = 1
87 84 86 oveq12d φ a 0 ..^ 0 L a c a Z 0 = 1 1
88 ax-1cn 1
89 88 mulid1i 1 1 = 1
90 87 89 eqtrdi φ a 0 ..^ 0 L a c a Z 0 = 1
91 90 88 eqeltrdi φ a 0 ..^ 0 L a c a Z 0
92 91 adantr φ c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0
93 79 92 fsumcl φ c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0
94 oveq2 m = 0 1 N repr 0 m = 1 N repr 0 0
95 simpl m = 0 c 1 N repr 0 m m = 0
96 95 oveq2d m = 0 c 1 N repr 0 m Z m = Z 0
97 96 oveq2d m = 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = a 0 ..^ 0 L a c a Z 0
98 94 97 sumeq12dv m = 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0
99 98 sumsn 0 0 c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0 m 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0
100 70 93 99 sylancr φ m 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0
101 77 sumeq1d φ c 1 N repr 0 0 a 0 ..^ 0 L a c a Z 0 = c a 0 ..^ 0 L a c a Z 0
102 0ex V
103 80 prodeq1i a 0 ..^ 0 L a a = a L a a
104 prod0 a L a a = 1
105 103 104 eqtri a 0 ..^ 0 L a a = 1
106 105 a1i φ a 0 ..^ 0 L a a = 1
107 106 88 eqeltrdi φ a 0 ..^ 0 L a a
108 86 88 eqeltrdi φ Z 0
109 107 108 mulcld φ a 0 ..^ 0 L a a Z 0
110 fveq1 c = c a = a
111 110 fveq2d c = L a c a = L a a
112 111 ralrimivw c = a 0 ..^ 0 L a c a = L a a
113 112 prodeq2d c = a 0 ..^ 0 L a c a = a 0 ..^ 0 L a a
114 113 oveq1d c = a 0 ..^ 0 L a c a Z 0 = a 0 ..^ 0 L a a Z 0
115 114 sumsn V a 0 ..^ 0 L a a Z 0 c a 0 ..^ 0 L a c a Z 0 = a 0 ..^ 0 L a a Z 0
116 102 109 115 sylancr φ c a 0 ..^ 0 L a c a Z 0 = a 0 ..^ 0 L a a Z 0
117 106 86 oveq12d φ a 0 ..^ 0 L a a Z 0 = 1 1
118 117 87 90 3eqtr2d φ a 0 ..^ 0 L a a Z 0 = 1
119 116 118 eqtrd φ c a 0 ..^ 0 L a c a Z 0 = 1
120 100 101 119 3eqtrd φ m 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = 1
121 1 nn0cnd φ N
122 121 mul02d φ 0 N = 0
123 122 oveq2d φ 0 0 N = 0 0
124 fz0sn 0 0 = 0
125 123 124 eqtrdi φ 0 0 N = 0
126 125 sumeq1d φ m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m = m 0 c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
127 80 prodeq1i a 0 ..^ 0 b = 1 N L a b Z b = a b = 1 N L a b Z b
128 prod0 a b = 1 N L a b Z b = 1
129 127 128 eqtri a 0 ..^ 0 b = 1 N L a b Z b = 1
130 129 a1i φ a 0 ..^ 0 b = 1 N L a b Z b = 1
131 120 126 130 3eqtr4rd φ a 0 ..^ 0 b = 1 N L a b Z b = m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
132 131 a1d φ 0 S a 0 ..^ 0 b = 1 N L a b Z b = m = 0 0 N c 1 N repr 0 m a 0 ..^ 0 L a c a Z m
133 simpll φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S φ s 0
134 simplr φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
135 oveq2 m = n 1 N repr s m = 1 N repr s n
136 oveq2 m = n Z m = Z n
137 136 oveq2d m = n a 0 ..^ s L a c a Z m = a 0 ..^ s L a c a Z n
138 137 adantr m = n c 1 N repr s m a 0 ..^ s L a c a Z m = a 0 ..^ s L a c a Z n
139 135 138 sumeq12dv m = n c 1 N repr s m a 0 ..^ s L a c a Z m = c 1 N repr s n a 0 ..^ s L a c a Z n
140 139 cbvsumv m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m = n = 0 s N c 1 N repr s n a 0 ..^ s L a c a Z n
141 140 eqeq2i a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m a 0 ..^ s b = 1 N L a b Z b = n = 0 s N c 1 N repr s n a 0 ..^ s L a c a Z n
142 simpl a = i b 1 N a = i
143 142 fveq2d a = i b 1 N L a = L i
144 143 fveq1d a = i b 1 N L a b = L i b
145 144 oveq1d a = i b 1 N L a b Z b = L i b Z b
146 145 sumeq2dv a = i b = 1 N L a b Z b = b = 1 N L i b Z b
147 146 cbvprodv a 0 ..^ s b = 1 N L a b Z b = i 0 ..^ s b = 1 N L i b Z b
148 fveq2 b = j L i b = L i j
149 oveq2 b = j Z b = Z j
150 148 149 oveq12d b = j L i b Z b = L i j Z j
151 150 cbvsumv b = 1 N L i b Z b = j = 1 N L i j Z j
152 151 a1i i 0 ..^ s b = 1 N L i b Z b = j = 1 N L i j Z j
153 152 prodeq2i i 0 ..^ s b = 1 N L i b Z b = i 0 ..^ s j = 1 N L i j Z j
154 147 153 eqtri a 0 ..^ s b = 1 N L a b Z b = i 0 ..^ s j = 1 N L i j Z j
155 fveq2 a = i L a = L i
156 fveq2 a = i c a = c i
157 155 156 fveq12d a = i L a c a = L i c i
158 157 cbvprodv a 0 ..^ s L a c a = i 0 ..^ s L i c i
159 158 oveq1i a 0 ..^ s L a c a Z n = i 0 ..^ s L i c i Z n
160 159 a1i c 1 N repr s n a 0 ..^ s L a c a Z n = i 0 ..^ s L i c i Z n
161 160 sumeq2i c 1 N repr s n a 0 ..^ s L a c a Z n = c 1 N repr s n i 0 ..^ s L i c i Z n
162 simpl c = k i 0 ..^ s c = k
163 162 fveq1d c = k i 0 ..^ s c i = k i
164 163 fveq2d c = k i 0 ..^ s L i c i = L i k i
165 164 prodeq2dv c = k i 0 ..^ s L i c i = i 0 ..^ s L i k i
166 165 oveq1d c = k i 0 ..^ s L i c i Z n = i 0 ..^ s L i k i Z n
167 166 cbvsumv c 1 N repr s n i 0 ..^ s L i c i Z n = k 1 N repr s n i 0 ..^ s L i k i Z n
168 161 167 eqtri c 1 N repr s n a 0 ..^ s L a c a Z n = k 1 N repr s n i 0 ..^ s L i k i Z n
169 168 a1i n 0 s N c 1 N repr s n a 0 ..^ s L a c a Z n = k 1 N repr s n i 0 ..^ s L i k i Z n
170 169 sumeq2i n = 0 s N c 1 N repr s n a 0 ..^ s L a c a Z n = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
171 154 170 eqeq12i a 0 ..^ s b = 1 N L a b Z b = n = 0 s N c 1 N repr s n a 0 ..^ s L a c a Z n i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
172 141 171 bitri a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
173 172 imbi2i s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
174 134 173 sylib φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
175 simpr φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S s + 1 S
176 1 ad3antrrr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S N 0
177 2 ad3antrrr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S S 0
178 3 ad3antrrr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S Z
179 4 ad3antrrr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S L : 0 ..^ S
180 simpllr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s 0
181 simpr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s + 1 S
182 5 180 sselid φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s
183 1red φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S 1
184 182 183 readdcld φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s + 1
185 5 177 sselid φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S S
186 182 ltp1d φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s < s + 1
187 182 184 186 ltled φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s s + 1
188 182 184 185 187 181 letrd φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s S
189 simplr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n
190 189 173 sylibr φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
191 188 190 mpd φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m
192 176 177 178 179 180 181 191 breprexplemc φ s 0 s S i 0 ..^ s j = 1 N L i j Z j = n = 0 s N k 1 N repr s n i 0 ..^ s L i k i Z n s + 1 S a 0 ..^ s + 1 b = 1 N L a b Z b = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
193 133 174 175 192 syl21anc φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S a 0 ..^ s + 1 b = 1 N L a b Z b = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
194 193 ex φ s 0 s S a 0 ..^ s b = 1 N L a b Z b = m = 0 s N c 1 N repr s m a 0 ..^ s L a c a Z m s + 1 S a 0 ..^ s + 1 b = 1 N L a b Z b = m = 0 s + 1 N c 1 N repr s + 1 m a 0 ..^ s + 1 L a c a Z m
195 24 39 54 69 132 194 nn0indd φ S 0 S S a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m
196 9 195 mpd φ S 0 a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m
197 2 196 mpdan φ a 0 ..^ S b = 1 N L a b Z b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a Z m