Metamath Proof Explorer


Theorem breprexplema

Description: Lemma for breprexp (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses breprexp.n φ N 0
breprexp.s φ S 0
breprexplema.m φ M 0
breprexplema.1 φ M S + 1 N
breprexplema.l φ x 0 ..^ S + 1 y L x y
Assertion breprexplema φ d 1 N repr S + 1 M a 0 ..^ S + 1 L a d a = b = 1 N d 1 N repr S M b a 0 ..^ S L a d a L S b

Proof

Step Hyp Ref Expression
1 breprexp.n φ N 0
2 breprexp.s φ S 0
3 breprexplema.m φ M 0
4 breprexplema.1 φ M S + 1 N
5 breprexplema.l φ x 0 ..^ S + 1 y L x y
6 fz1ssnn 1 N
7 6 a1i φ 1 N
8 3 nn0zd φ M
9 eqid v 1 N repr S M b v S b = v 1 N repr S M b v S b
10 7 8 2 9 reprsuc φ 1 N repr S + 1 M = b = 1 N ran v 1 N repr S M b v S b
11 10 sumeq1d φ d 1 N repr S + 1 M a 0 ..^ S + 1 L a d a = d b = 1 N ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a
12 fzfid φ 1 N Fin
13 6 a1i φ b 1 N 1 N
14 8 adantr φ b 1 N M
15 fzssz 1 N
16 simpr φ b 1 N b 1 N
17 15 16 sselid φ b 1 N b
18 14 17 zsubcld φ b 1 N M b
19 2 adantr φ b 1 N S 0
20 12 adantr φ b 1 N 1 N Fin
21 13 18 19 20 reprfi φ b 1 N 1 N repr S M b Fin
22 mptfi 1 N repr S M b Fin v 1 N repr S M b v S b Fin
23 21 22 syl φ b 1 N v 1 N repr S M b v S b Fin
24 rnfi v 1 N repr S M b v S b Fin ran v 1 N repr S M b v S b Fin
25 23 24 syl φ b 1 N ran v 1 N repr S M b v S b Fin
26 13 18 19 reprval φ b 1 N 1 N repr S M b = c 1 N 0 ..^ S | a 0 ..^ S c a = M b
27 ssrab2 c 1 N 0 ..^ S | a 0 ..^ S c a = M b 1 N 0 ..^ S
28 26 27 eqsstrdi φ b 1 N 1 N repr S M b 1 N 0 ..^ S
29 12 elexd φ 1 N V
30 fzonel ¬ S 0 ..^ S
31 30 a1i φ ¬ S 0 ..^ S
32 28 29 2 31 9 actfunsnrndisj φ Disj b = 1 N ran v 1 N repr S M b v S b
33 fzofi 0 ..^ S + 1 Fin
34 33 a1i φ b 1 N d ran v 1 N repr S M b v S b 0 ..^ S + 1 Fin
35 5 ralrimiva φ x 0 ..^ S + 1 y L x y
36 35 ralrimiva φ x 0 ..^ S + 1 y L x y
37 36 ad3antrrr φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 x 0 ..^ S + 1 y L x y
38 simpr φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 a 0 ..^ S + 1
39 nfv v φ b 1 N
40 nfcv _ v d
41 nfmpt1 _ v v 1 N repr S M b v S b
42 41 nfrn _ v ran v 1 N repr S M b v S b
43 40 42 nfel v d ran v 1 N repr S M b v S b
44 39 43 nfan v φ b 1 N d ran v 1 N repr S M b v S b
45 6 a1i φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b 1 N
46 18 ad3antrrr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b M b
47 19 ad3antrrr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b S 0
48 simplr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b v 1 N repr S M b
49 45 46 47 48 reprf φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b v : 0 ..^ S 1 N
50 16 ad3antrrr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b b 1 N
51 47 50 fsnd φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b S b : S 1 N
52 fzodisjsn 0 ..^ S S =
53 52 a1i φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b 0 ..^ S S =
54 fun2 v : 0 ..^ S 1 N S b : S 1 N 0 ..^ S S = v S b : 0 ..^ S S 1 N
55 49 51 53 54 syl21anc φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b v S b : 0 ..^ S S 1 N
56 simpr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b d = v S b
57 nn0uz 0 = 0
58 2 57 eleqtrdi φ S 0
59 fzosplitsn S 0 0 ..^ S + 1 = 0 ..^ S S
60 58 59 syl φ 0 ..^ S + 1 = 0 ..^ S S
61 60 ad4antr φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b 0 ..^ S + 1 = 0 ..^ S S
62 56 61 feq12d φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b d : 0 ..^ S + 1 1 N v S b : 0 ..^ S S 1 N
63 55 62 mpbird φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b d : 0 ..^ S + 1 1 N
64 simpr φ b 1 N d ran v 1 N repr S M b v S b d ran v 1 N repr S M b v S b
65 vex v V
66 snex S b V
67 65 66 unex v S b V
68 9 67 elrnmpti d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b
69 64 68 sylib φ b 1 N d ran v 1 N repr S M b v S b v 1 N repr S M b d = v S b
70 44 63 69 r19.29af φ b 1 N d ran v 1 N repr S M b v S b d : 0 ..^ S + 1 1 N
71 70 adantr φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 d : 0 ..^ S + 1 1 N
72 71 38 ffvelrnd φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 d a 1 N
73 6 72 sselid φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 d a
74 fveq2 x = a L x = L a
75 74 fveq1d x = a L x y = L a y
76 75 eleq1d x = a L x y L a y
77 fveq2 y = d a L a y = L a d a
78 77 eleq1d y = d a L a y L a d a
79 76 78 rspc2v a 0 ..^ S + 1 d a x 0 ..^ S + 1 y L x y L a d a
80 38 73 79 syl2anc φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 x 0 ..^ S + 1 y L x y L a d a
81 37 80 mpd φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a
82 34 81 fprodcl φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a
83 82 anasss φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a
84 12 25 32 83 fsumiun φ d b = 1 N ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a = b = 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a
85 60 ad2antrr φ b 1 N e 1 N repr S M b 0 ..^ S + 1 = 0 ..^ S S
86 85 prodeq1d φ b 1 N e 1 N repr S M b a 0 ..^ S + 1 L a e S b a = a 0 ..^ S S L a e S b a
87 nfv a φ b 1 N e 1 N repr S M b
88 nfcv _ a L S e S b S
89 fzofi 0 ..^ S Fin
90 89 a1i φ b 1 N e 1 N repr S M b 0 ..^ S Fin
91 19 adantr φ b 1 N e 1 N repr S M b S 0
92 30 a1i φ b 1 N e 1 N repr S M b ¬ S 0 ..^ S
93 6 a1i φ b 1 N e 1 N repr S M b 1 N
94 18 adantr φ b 1 N e 1 N repr S M b M b
95 simpr φ b 1 N e 1 N repr S M b e 1 N repr S M b
96 93 94 91 95 reprf φ b 1 N e 1 N repr S M b e : 0 ..^ S 1 N
97 96 ffnd φ b 1 N e 1 N repr S M b e Fn 0 ..^ S
98 97 adantr φ b 1 N e 1 N repr S M b a 0 ..^ S e Fn 0 ..^ S
99 16 adantr φ b 1 N e 1 N repr S M b b 1 N
100 fnsng S 0 b 1 N S b Fn S
101 91 99 100 syl2anc φ b 1 N e 1 N repr S M b S b Fn S
102 101 adantr φ b 1 N e 1 N repr S M b a 0 ..^ S S b Fn S
103 52 a1i φ b 1 N e 1 N repr S M b a 0 ..^ S 0 ..^ S S =
104 simpr φ b 1 N e 1 N repr S M b a 0 ..^ S a 0 ..^ S
105 fvun1 e Fn 0 ..^ S S b Fn S 0 ..^ S S = a 0 ..^ S e S b a = e a
106 98 102 103 104 105 syl112anc φ b 1 N e 1 N repr S M b a 0 ..^ S e S b a = e a
107 106 fveq2d φ b 1 N e 1 N repr S M b a 0 ..^ S L a e S b a = L a e a
108 36 ad2antrr φ b 1 N e 1 N repr S M b x 0 ..^ S + 1 y L x y
109 108 adantr φ b 1 N e 1 N repr S M b a 0 ..^ S x 0 ..^ S + 1 y L x y
110 fzossfzop1 S 0 0 ..^ S 0 ..^ S + 1
111 2 110 syl φ 0 ..^ S 0 ..^ S + 1
112 111 ad2antrr φ b 1 N e 1 N repr S M b 0 ..^ S 0 ..^ S + 1
113 112 sselda φ b 1 N e 1 N repr S M b a 0 ..^ S a 0 ..^ S + 1
114 96 ffvelrnda φ b 1 N e 1 N repr S M b a 0 ..^ S e a 1 N
115 6 114 sselid φ b 1 N e 1 N repr S M b a 0 ..^ S e a
116 fveq2 y = e a L a y = L a e a
117 116 eleq1d y = e a L a y L a e a
118 76 117 rspc2v a 0 ..^ S + 1 e a x 0 ..^ S + 1 y L x y L a e a
119 113 115 118 syl2anc φ b 1 N e 1 N repr S M b a 0 ..^ S x 0 ..^ S + 1 y L x y L a e a
120 109 119 mpd φ b 1 N e 1 N repr S M b a 0 ..^ S L a e a
121 107 120 eqeltrd φ b 1 N e 1 N repr S M b a 0 ..^ S L a e S b a
122 fveq2 a = S L a = L S
123 fveq2 a = S e S b a = e S b S
124 122 123 fveq12d a = S L a e S b a = L S e S b S
125 52 a1i φ b 1 N e 1 N repr S M b 0 ..^ S S =
126 snidg S 0 S S
127 91 126 syl φ b 1 N e 1 N repr S M b S S
128 fvun2 e Fn 0 ..^ S S b Fn S 0 ..^ S S = S S e S b S = S b S
129 97 101 125 127 128 syl112anc φ b 1 N e 1 N repr S M b e S b S = S b S
130 fvsng S 0 b 1 N S b S = b
131 91 99 130 syl2anc φ b 1 N e 1 N repr S M b S b S = b
132 129 131 eqtrd φ b 1 N e 1 N repr S M b e S b S = b
133 132 fveq2d φ b 1 N e 1 N repr S M b L S e S b S = L S b
134 fzonn0p1 S 0 S 0 ..^ S + 1
135 2 134 syl φ S 0 ..^ S + 1
136 135 ad2antrr φ b 1 N e 1 N repr S M b S 0 ..^ S + 1
137 6 99 sselid φ b 1 N e 1 N repr S M b b
138 fveq2 x = S L x = L S
139 138 fveq1d x = S L x y = L S y
140 139 eleq1d x = S L x y L S y
141 fveq2 y = b L S y = L S b
142 141 eleq1d y = b L S y L S b
143 140 142 rspc2v S 0 ..^ S + 1 b x 0 ..^ S + 1 y L x y L S b
144 136 137 143 syl2anc φ b 1 N e 1 N repr S M b x 0 ..^ S + 1 y L x y L S b
145 108 144 mpd φ b 1 N e 1 N repr S M b L S b
146 133 145 eqeltrd φ b 1 N e 1 N repr S M b L S e S b S
147 87 88 90 91 92 121 124 146 fprodsplitsn φ b 1 N e 1 N repr S M b a 0 ..^ S S L a e S b a = a 0 ..^ S L a e S b a L S e S b S
148 107 prodeq2dv φ b 1 N e 1 N repr S M b a 0 ..^ S L a e S b a = a 0 ..^ S L a e a
149 148 133 oveq12d φ b 1 N e 1 N repr S M b a 0 ..^ S L a e S b a L S e S b S = a 0 ..^ S L a e a L S b
150 86 147 149 3eqtrd φ b 1 N e 1 N repr S M b a 0 ..^ S + 1 L a e S b a = a 0 ..^ S L a e a L S b
151 150 sumeq2dv φ b 1 N e 1 N repr S M b a 0 ..^ S + 1 L a e S b a = e 1 N repr S M b a 0 ..^ S L a e a L S b
152 simpl d = e S b a 0 ..^ S + 1 d = e S b
153 152 fveq1d d = e S b a 0 ..^ S + 1 d a = e S b a
154 153 fveq2d d = e S b a 0 ..^ S + 1 L a d a = L a e S b a
155 154 prodeq2dv d = e S b a 0 ..^ S + 1 L a d a = a 0 ..^ S + 1 L a e S b a
156 28 29 2 31 9 actfunsnf1o φ b 1 N v 1 N repr S M b v S b : 1 N repr S M b 1-1 onto ran v 1 N repr S M b v S b
157 9 a1i φ b 1 N e 1 N repr S M b v 1 N repr S M b v S b = v 1 N repr S M b v S b
158 simpr φ b 1 N e 1 N repr S M b v = e v = e
159 158 uneq1d φ b 1 N e 1 N repr S M b v = e v S b = e S b
160 vex e V
161 160 66 unex e S b V
162 161 a1i φ b 1 N e 1 N repr S M b e S b V
163 157 159 95 162 fvmptd φ b 1 N e 1 N repr S M b v 1 N repr S M b v S b e = e S b
164 155 21 156 163 82 fsumf1o φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a = e 1 N repr S M b a 0 ..^ S + 1 L a e S b a
165 simpl d = e a 0 ..^ S d = e
166 165 fveq1d d = e a 0 ..^ S d a = e a
167 166 fveq2d d = e a 0 ..^ S L a d a = L a e a
168 167 prodeq2dv d = e a 0 ..^ S L a d a = a 0 ..^ S L a e a
169 168 oveq1d d = e a 0 ..^ S L a d a L S b = a 0 ..^ S L a e a L S b
170 169 cbvsumv d 1 N repr S M b a 0 ..^ S L a d a L S b = e 1 N repr S M b a 0 ..^ S L a e a L S b
171 170 a1i φ b 1 N d 1 N repr S M b a 0 ..^ S L a d a L S b = e 1 N repr S M b a 0 ..^ S L a e a L S b
172 151 164 171 3eqtr4d φ b 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a = d 1 N repr S M b a 0 ..^ S L a d a L S b
173 172 sumeq2dv φ b = 1 N d ran v 1 N repr S M b v S b a 0 ..^ S + 1 L a d a = b = 1 N d 1 N repr S M b a 0 ..^ S L a d a L S b
174 11 84 173 3eqtrd φ d 1 N repr S + 1 M a 0 ..^ S + 1 L a d a = b = 1 N d 1 N repr S M b a 0 ..^ S L a d a L S b