Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
Representations of a number as sums of integers
breprexplemb
Next ⟩
breprexplemc
Metamath Proof Explorer
Ascii
Unicode
Theorem
breprexplemb
Description:
Lemma for
breprexp
(closure).
(Contributed by
Thierry Arnoux
, 7-Dec-2021)
Ref
Expression
Hypotheses
breprexp.n
⊢
φ
→
N
∈
ℕ
0
breprexp.s
⊢
φ
→
S
∈
ℕ
0
breprexp.z
⊢
φ
→
Z
∈
ℂ
breprexp.h
⊢
φ
→
L
:
0
..^
S
⟶
ℂ
ℕ
breprexplemb.x
⊢
φ
→
X
∈
0
..^
S
breprexplemb.y
⊢
φ
→
Y
∈
ℕ
Assertion
breprexplemb
⊢
φ
→
L
⁡
X
⁡
Y
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
breprexp.n
⊢
φ
→
N
∈
ℕ
0
2
breprexp.s
⊢
φ
→
S
∈
ℕ
0
3
breprexp.z
⊢
φ
→
Z
∈
ℂ
4
breprexp.h
⊢
φ
→
L
:
0
..^
S
⟶
ℂ
ℕ
5
breprexplemb.x
⊢
φ
→
X
∈
0
..^
S
6
breprexplemb.y
⊢
φ
→
Y
∈
ℕ
7
4
5
ffvelrnd
⊢
φ
→
L
⁡
X
∈
ℂ
ℕ
8
cnex
⊢
ℂ
∈
V
9
nnex
⊢
ℕ
∈
V
10
8
9
elmap
⊢
L
⁡
X
∈
ℂ
ℕ
↔
L
⁡
X
:
ℕ
⟶
ℂ
11
7
10
sylib
⊢
φ
→
L
⁡
X
:
ℕ
⟶
ℂ
12
11
6
ffvelrnd
⊢
φ
→
L
⁡
X
⁡
Y
∈
ℂ