Metamath Proof Explorer


Theorem breprexplemb

Description: Lemma for breprexp (closure). (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses breprexp.n φ N 0
breprexp.s φ S 0
breprexp.z φ Z
breprexp.h φ L : 0 ..^ S
breprexplemb.x φ X 0 ..^ S
breprexplemb.y φ Y
Assertion breprexplemb φ L X Y

Proof

Step Hyp Ref Expression
1 breprexp.n φ N 0
2 breprexp.s φ S 0
3 breprexp.z φ Z
4 breprexp.h φ L : 0 ..^ S
5 breprexplemb.x φ X 0 ..^ S
6 breprexplemb.y φ Y
7 4 5 ffvelrnd φ L X
8 cnex V
9 nnex V
10 8 9 elmap L X L X :
11 7 10 sylib φ L X :
12 11 6 ffvelrnd φ L X Y