Metamath Proof Explorer


Theorem breprexplemc

Description: Lemma for breprexp (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021)

Ref Expression
Hypotheses breprexp.n φ N 0
breprexp.s φ S 0
breprexp.z φ Z
breprexp.h φ L : 0 ..^ S
breprexplemc.t φ T 0
breprexplemc.s φ T + 1 S
breprexplemc.1 φ a 0 ..^ T b = 1 N L a b Z b = m = 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m
Assertion breprexplemc φ a 0 ..^ T + 1 b = 1 N L a b Z b = m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m

Proof

Step Hyp Ref Expression
1 breprexp.n φ N 0
2 breprexp.s φ S 0
3 breprexp.z φ Z
4 breprexp.h φ L : 0 ..^ S
5 breprexplemc.t φ T 0
6 breprexplemc.s φ T + 1 S
7 breprexplemc.1 φ a 0 ..^ T b = 1 N L a b Z b = m = 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m
8 nn0uz 0 = 0
9 5 8 eleqtrdi φ T 0
10 fzosplitsn T 0 0 ..^ T + 1 = 0 ..^ T T
11 9 10 syl φ 0 ..^ T + 1 = 0 ..^ T T
12 11 prodeq1d φ a 0 ..^ T + 1 b = 1 N L a b Z b = a 0 ..^ T T b = 1 N L a b Z b
13 nfv a φ
14 nfcv _ a b = 1 N L T b Z b
15 fzofi 0 ..^ T Fin
16 15 a1i φ 0 ..^ T Fin
17 fzonel ¬ T 0 ..^ T
18 17 a1i φ ¬ T 0 ..^ T
19 fzfid φ a 0 ..^ T 1 N Fin
20 1 ad2antrr φ a 0 ..^ T b 1 N N 0
21 2 ad2antrr φ a 0 ..^ T b 1 N S 0
22 3 ad2antrr φ a 0 ..^ T b 1 N Z
23 4 adantr φ a 0 ..^ T L : 0 ..^ S
24 23 adantr φ a 0 ..^ T b 1 N L : 0 ..^ S
25 5 nn0zd φ T
26 2 nn0zd φ S
27 5 nn0red φ T
28 1red φ 1
29 27 28 readdcld φ T + 1
30 2 nn0red φ S
31 27 lep1d φ T T + 1
32 27 29 30 31 6 letrd φ T S
33 eluz1 T S T S T S
34 33 biimpar T S T S S T
35 25 26 32 34 syl12anc φ S T
36 fzoss2 S T 0 ..^ T 0 ..^ S
37 35 36 syl φ 0 ..^ T 0 ..^ S
38 37 sselda φ a 0 ..^ T a 0 ..^ S
39 38 adantr φ a 0 ..^ T b 1 N a 0 ..^ S
40 fz1ssnn 1 N
41 40 a1i φ a 0 ..^ T 1 N
42 41 sselda φ a 0 ..^ T b 1 N b
43 20 21 22 24 39 42 breprexplemb φ a 0 ..^ T b 1 N L a b
44 nnssnn0 0
45 40 44 sstri 1 N 0
46 45 a1i φ 1 N 0
47 46 ralrimivw φ a 0 ..^ T 1 N 0
48 47 r19.21bi φ a 0 ..^ T 1 N 0
49 48 sselda φ a 0 ..^ T b 1 N b 0
50 22 49 expcld φ a 0 ..^ T b 1 N Z b
51 43 50 mulcld φ a 0 ..^ T b 1 N L a b Z b
52 19 51 fsumcl φ a 0 ..^ T b = 1 N L a b Z b
53 simpl a = T b 1 N a = T
54 53 fveq2d a = T b 1 N L a = L T
55 54 fveq1d a = T b 1 N L a b = L T b
56 55 oveq1d a = T b 1 N L a b Z b = L T b Z b
57 56 sumeq2dv a = T b = 1 N L a b Z b = b = 1 N L T b Z b
58 fzfid φ 1 N Fin
59 1 adantr φ b 1 N N 0
60 2 adantr φ b 1 N S 0
61 3 adantr φ b 1 N Z
62 4 adantr φ b 1 N L : 0 ..^ S
63 5 nn0ge0d φ 0 T
64 zltp1le T S T < S T + 1 S
65 25 26 64 syl2anc φ T < S T + 1 S
66 6 65 mpbird φ T < S
67 0zd φ 0
68 elfzo T 0 S T 0 ..^ S 0 T T < S
69 25 67 26 68 syl3anc φ T 0 ..^ S 0 T T < S
70 63 66 69 mpbir2and φ T 0 ..^ S
71 70 adantr φ b 1 N T 0 ..^ S
72 40 a1i φ 1 N
73 72 sselda φ b 1 N b
74 59 60 61 62 71 73 breprexplemb φ b 1 N L T b
75 46 sselda φ b 1 N b 0
76 61 75 expcld φ b 1 N Z b
77 74 76 mulcld φ b 1 N L T b Z b
78 58 77 fsumcl φ b = 1 N L T b Z b
79 13 14 16 5 18 52 57 78 fprodsplitsn φ a 0 ..^ T T b = 1 N L a b Z b = a 0 ..^ T b = 1 N L a b Z b b = 1 N L T b Z b
80 7 oveq1d φ a 0 ..^ T b = 1 N L a b Z b b = 1 N L T b Z b = m = 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m b = 1 N L T b Z b
81 fzfid φ 0 T N Fin
82 40 a1i φ m 0 T N 1 N
83 simpr φ m 0 T N m 0 T N
84 83 elfzelzd φ m 0 T N m
85 5 adantr φ m 0 T N T 0
86 58 adantr φ m 0 T N 1 N Fin
87 82 84 85 86 reprfi φ m 0 T N 1 N repr T m Fin
88 15 a1i φ m 0 T N d 1 N repr T m 0 ..^ T Fin
89 1 adantr φ m 0 T N N 0
90 89 ad2antrr φ m 0 T N d 1 N repr T m a 0 ..^ T N 0
91 2 ad3antrrr φ m 0 T N d 1 N repr T m a 0 ..^ T S 0
92 3 ad3antrrr φ m 0 T N d 1 N repr T m a 0 ..^ T Z
93 4 ad3antrrr φ m 0 T N d 1 N repr T m a 0 ..^ T L : 0 ..^ S
94 37 ad2antrr φ m 0 T N d 1 N repr T m 0 ..^ T 0 ..^ S
95 94 sselda φ m 0 T N d 1 N repr T m a 0 ..^ T a 0 ..^ S
96 40 a1i φ m 0 T N d 1 N repr T m a 0 ..^ T 1 N
97 84 ad2antrr φ m 0 T N d 1 N repr T m a 0 ..^ T m
98 85 ad2antrr φ m 0 T N d 1 N repr T m a 0 ..^ T T 0
99 simplr φ m 0 T N d 1 N repr T m a 0 ..^ T d 1 N repr T m
100 96 97 98 99 reprf φ m 0 T N d 1 N repr T m a 0 ..^ T d : 0 ..^ T 1 N
101 simpr φ m 0 T N d 1 N repr T m a 0 ..^ T a 0 ..^ T
102 100 101 ffvelrnd φ m 0 T N d 1 N repr T m a 0 ..^ T d a 1 N
103 40 102 sselid φ m 0 T N d 1 N repr T m a 0 ..^ T d a
104 90 91 92 93 95 103 breprexplemb φ m 0 T N d 1 N repr T m a 0 ..^ T L a d a
105 88 104 fprodcl φ m 0 T N d 1 N repr T m a 0 ..^ T L a d a
106 3 ad2antrr φ m 0 T N d 1 N repr T m Z
107 fz0ssnn0 0 T N 0
108 107 83 sselid φ m 0 T N m 0
109 108 adantr φ m 0 T N d 1 N repr T m m 0
110 106 109 expcld φ m 0 T N d 1 N repr T m Z m
111 105 110 mulcld φ m 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m
112 87 111 fsumcl φ m 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m
113 81 58 112 77 fsum2mul φ m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = m = 0 T N d 1 N repr T m a 0 ..^ T L a d a Z m b = 1 N L T b Z b
114 40 a1i φ m 0 T + 1 N b 1 N 1 N
115 simpr φ m 0 T + 1 N m 0 T + 1 N
116 115 elfzelzd φ m 0 T + 1 N m
117 116 adantr φ m 0 T + 1 N b 1 N m
118 simpr φ m 0 T + 1 N b 1 N b 1 N
119 118 elfzelzd φ m 0 T + 1 N b 1 N b
120 117 119 zsubcld φ m 0 T + 1 N b 1 N m b
121 5 adantr φ m 0 T + 1 N T 0
122 121 adantr φ m 0 T + 1 N b 1 N T 0
123 58 adantr φ m 0 T + 1 N 1 N Fin
124 123 adantr φ m 0 T + 1 N b 1 N 1 N Fin
125 114 120 122 124 reprfi φ m 0 T + 1 N b 1 N 1 N repr T m b Fin
126 74 adantlr φ m 0 T + 1 N b 1 N L T b
127 3 adantr φ m 0 T + 1 N Z
128 fz0ssnn0 0 T + 1 N 0
129 128 115 sselid φ m 0 T + 1 N m 0
130 127 129 expcld φ m 0 T + 1 N Z m
131 130 adantr φ m 0 T + 1 N b 1 N Z m
132 126 131 mulcld φ m 0 T + 1 N b 1 N L T b Z m
133 15 a1i φ m 0 T + 1 N b 1 N d 1 N repr T m b 0 ..^ T Fin
134 1 adantr φ m 0 T + 1 N N 0
135 134 adantr φ m 0 T + 1 N b 1 N N 0
136 135 ad2antrr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T N 0
137 2 ad4antr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T S 0
138 127 ad3antrrr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T Z
139 4 ad4antr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L : 0 ..^ S
140 38 ad5ant15 φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T a 0 ..^ S
141 40 a1i φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T 1 N
142 120 ad2antrr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T m b
143 122 ad2antrr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T T 0
144 simplr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T d 1 N repr T m b
145 141 142 143 144 reprf φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T d : 0 ..^ T 1 N
146 simpr φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T a 0 ..^ T
147 145 146 ffvelrnd φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T d a 1 N
148 40 147 sselid φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T d a
149 136 137 138 139 140 148 breprexplemb φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a
150 133 149 fprodcl φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a
151 125 132 150 fsummulc1 φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
152 151 sumeq2dv φ m 0 T + 1 N b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
153 elfzle2 m 0 T + 1 N m T + 1 N
154 153 adantl φ m 0 T + 1 N m T + 1 N
155 134 ad2antrr φ m 0 T + 1 N x 0 ..^ T + 1 y N 0
156 2 ad3antrrr φ m 0 T + 1 N x 0 ..^ T + 1 y S 0
157 127 ad2antrr φ m 0 T + 1 N x 0 ..^ T + 1 y Z
158 4 ad3antrrr φ m 0 T + 1 N x 0 ..^ T + 1 y L : 0 ..^ S
159 25 peano2zd φ T + 1
160 eluz T + 1 S S T + 1 T + 1 S
161 160 biimpar T + 1 S T + 1 S S T + 1
162 159 26 6 161 syl21anc φ S T + 1
163 fzoss2 S T + 1 0 ..^ T + 1 0 ..^ S
164 162 163 syl φ 0 ..^ T + 1 0 ..^ S
165 164 ad3antrrr φ m 0 T + 1 N x 0 ..^ T + 1 y 0 ..^ T + 1 0 ..^ S
166 simplr φ m 0 T + 1 N x 0 ..^ T + 1 y x 0 ..^ T + 1
167 165 166 sseldd φ m 0 T + 1 N x 0 ..^ T + 1 y x 0 ..^ S
168 simpr φ m 0 T + 1 N x 0 ..^ T + 1 y y
169 155 156 157 158 167 168 breprexplemb φ m 0 T + 1 N x 0 ..^ T + 1 y L x y
170 134 121 129 154 169 breprexplema φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b
171 170 oveq1d φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
172 126 adantr φ m 0 T + 1 N b 1 N d 1 N repr T m b L T b
173 150 172 mulcld φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b
174 125 173 fsumcl φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b
175 123 130 174 fsummulc1 φ m 0 T + 1 N b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
176 125 131 173 fsummulc1 φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
177 131 adantr φ m 0 T + 1 N b 1 N d 1 N repr T m b Z m
178 150 172 177 mulassd φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = a 0 ..^ T L a d a L T b Z m
179 178 sumeq2dv φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
180 176 179 eqtrd φ m 0 T + 1 N b 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
181 180 sumeq2dv φ m 0 T + 1 N b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
182 171 175 181 3eqtrd φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
183 40 a1i φ m 0 T + 1 N 1 N
184 1nn0 1 0
185 184 a1i φ m 0 T + 1 N 1 0
186 121 185 nn0addcld φ m 0 T + 1 N T + 1 0
187 183 116 186 123 reprfi φ m 0 T + 1 N 1 N repr T + 1 m Fin
188 fzofi 0 ..^ T + 1 Fin
189 188 a1i φ m 0 T + 1 N d 1 N repr T + 1 m 0 ..^ T + 1 Fin
190 134 ad2antrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 N 0
191 2 ad3antrrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 S 0
192 127 ad2antrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 Z
193 4 ad3antrrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L : 0 ..^ S
194 164 ad2antrr φ m 0 T + 1 N d 1 N repr T + 1 m 0 ..^ T + 1 0 ..^ S
195 194 sselda φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 a 0 ..^ S
196 40 a1i φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 1 N
197 116 ad2antrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 m
198 186 ad2antrr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 T + 1 0
199 simplr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 d 1 N repr T + 1 m
200 196 197 198 199 reprf φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 d : 0 ..^ T + 1 1 N
201 simpr φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 a 0 ..^ T + 1
202 200 201 ffvelrnd φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 d a 1 N
203 40 202 sselid φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 d a
204 190 191 192 193 195 203 breprexplemb φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a
205 189 204 fprodcl φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a
206 187 130 205 fsummulc1 φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m
207 152 182 206 3eqtr2rd φ m 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
208 207 sumeq2dv φ m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = m = 0 T + 1 N b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
209 oveq1 n = m n b = m b
210 209 oveq2d n = m 1 N repr T n b = 1 N repr T m b
211 210 sumeq1d n = m d 1 N repr T n b a 0 ..^ T L a d a = d 1 N repr T m b a 0 ..^ T L a d a
212 oveq2 n = m Z n = Z m
213 212 oveq2d n = m L T b Z n = L T b Z m
214 211 213 oveq12d n = m d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
215 214 adantr n = m b 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
216 215 sumeq2dv n = m b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
217 216 cbvsumv n = 0 T + 1 N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = m = 0 T + 1 N b = 1 N d 1 N repr T m b a 0 ..^ T L a d a L T b Z m
218 208 217 eqtr4di φ m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m = n = 0 T + 1 N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n
219 5 1 nn0mulcld φ T N 0
220 oveq2 m = n b 1 N repr T m = 1 N repr T n b
221 220 sumeq1d m = n b d 1 N repr T m a 0 ..^ T L a d a = d 1 N repr T n b a 0 ..^ T L a d a
222 oveq1 m = n b m + b = n - b + b
223 222 oveq2d m = n b Z m + b = Z n - b + b
224 223 oveq2d m = n b L T b Z m + b = L T b Z n - b + b
225 221 224 oveq12d m = n b d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b
226 40 a1i φ m b b 1 N 1 N
227 uzssz b
228 simp2 φ m b b 1 N m b
229 227 228 sselid φ m b b 1 N m
230 5 3ad2ant1 φ m b b 1 N T 0
231 58 3ad2ant1 φ m b b 1 N 1 N Fin
232 226 229 230 231 reprfi φ m b b 1 N 1 N repr T m Fin
233 15 a1i φ m b b 1 N d 1 N repr T m 0 ..^ T Fin
234 59 3adant2 φ m b b 1 N N 0
235 234 ad2antrr φ m b b 1 N d 1 N repr T m a 0 ..^ T N 0
236 60 3adant2 φ m b b 1 N S 0
237 236 ad2antrr φ m b b 1 N d 1 N repr T m a 0 ..^ T S 0
238 61 3adant2 φ m b b 1 N Z
239 238 ad2antrr φ m b b 1 N d 1 N repr T m a 0 ..^ T Z
240 62 3adant2 φ m b b 1 N L : 0 ..^ S
241 240 ad2antrr φ m b b 1 N d 1 N repr T m a 0 ..^ T L : 0 ..^ S
242 37 3ad2ant1 φ m b b 1 N 0 ..^ T 0 ..^ S
243 242 adantr φ m b b 1 N d 1 N repr T m 0 ..^ T 0 ..^ S
244 243 sselda φ m b b 1 N d 1 N repr T m a 0 ..^ T a 0 ..^ S
245 40 a1i φ m b b 1 N d 1 N repr T m 1 N
246 229 adantr φ m b b 1 N d 1 N repr T m m
247 230 adantr φ m b b 1 N d 1 N repr T m T 0
248 simpr φ m b b 1 N d 1 N repr T m d 1 N repr T m
249 245 246 247 248 reprf φ m b b 1 N d 1 N repr T m d : 0 ..^ T 1 N
250 249 adantr φ m b b 1 N d 1 N repr T m a 0 ..^ T d : 0 ..^ T 1 N
251 simpr φ m b b 1 N d 1 N repr T m a 0 ..^ T a 0 ..^ T
252 250 251 ffvelrnd φ m b b 1 N d 1 N repr T m a 0 ..^ T d a 1 N
253 40 252 sselid φ m b b 1 N d 1 N repr T m a 0 ..^ T d a
254 235 237 239 241 244 253 breprexplemb φ m b b 1 N d 1 N repr T m a 0 ..^ T L a d a
255 233 254 fprodcl φ m b b 1 N d 1 N repr T m a 0 ..^ T L a d a
256 232 255 fsumcl φ m b b 1 N d 1 N repr T m a 0 ..^ T L a d a
257 71 3adant2 φ m b b 1 N T 0 ..^ S
258 73 3adant2 φ m b b 1 N b
259 234 236 238 240 257 258 breprexplemb φ m b b 1 N L T b
260 229 zcnd φ m b b 1 N m
261 simp3 φ m b b 1 N b 1 N
262 261 elfzelzd φ m b b 1 N b
263 262 zcnd φ m b b 1 N b
264 260 263 subnegd φ m b b 1 N m b = m + b
265 262 znegcld φ m b b 1 N b
266 eluzle m b b m
267 228 266 syl φ m b b 1 N b m
268 znn0sub b m b m m b 0
269 268 biimpa b m b m m b 0
270 265 229 267 269 syl21anc φ m b b 1 N m b 0
271 264 270 eqeltrrd φ m b b 1 N m + b 0
272 238 271 expcld φ m b b 1 N Z m + b
273 259 272 mulcld φ m b b 1 N L T b Z m + b
274 256 273 mulcld φ m b b 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b
275 59 adantr φ b 1 N n T N + b + 1 T N + N N 0
276 ssidd φ b 1 N n T N + b + 1 T N + N 1 N 1 N
277 simpr φ b 1 N n T N + b + 1 T N + N n T N + b + 1 T N + N
278 277 elfzelzd φ b 1 N n T N + b + 1 T N + N n
279 simplr φ b 1 N n T N + b + 1 T N + N b 1 N
280 279 elfzelzd φ b 1 N n T N + b + 1 T N + N b
281 278 280 zsubcld φ b 1 N n T N + b + 1 T N + N n b
282 5 ad2antrr φ b 1 N n T N + b + 1 T N + N T 0
283 27 ad2antrr φ b 1 N n T N + b + 1 T N + N T
284 275 nn0red φ b 1 N n T N + b + 1 T N + N N
285 283 284 remulcld φ b 1 N n T N + b + 1 T N + N T N
286 280 zred φ b 1 N n T N + b + 1 T N + N b
287 219 adantr φ b 1 N T N 0
288 287 75 nn0addcld φ b 1 N T N + b 0
289 184 a1i φ b 1 N 1 0
290 288 289 nn0addcld φ b 1 N T N + b + 1 0
291 fz2ssnn0 T N + b + 1 0 T N + b + 1 T N + N 0
292 290 291 syl φ b 1 N T N + b + 1 T N + N 0
293 292 sselda φ b 1 N n T N + b + 1 T N + N n 0
294 293 nn0red φ b 1 N n T N + b + 1 T N + N n
295 25 ad2antrr φ b 1 N n T N + b + 1 T N + N T
296 275 nn0zd φ b 1 N n T N + b + 1 T N + N N
297 295 296 zmulcld φ b 1 N n T N + b + 1 T N + N T N
298 297 280 zaddcld φ b 1 N n T N + b + 1 T N + N T N + b
299 elfzle1 n T N + b + 1 T N + N T N + b + 1 n
300 277 299 syl φ b 1 N n T N + b + 1 T N + N T N + b + 1 n
301 zltp1le T N + b n T N + b < n T N + b + 1 n
302 301 biimpar T N + b n T N + b + 1 n T N + b < n
303 298 278 300 302 syl21anc φ b 1 N n T N + b + 1 T N + N T N + b < n
304 ltaddsub T N b n T N + b < n T N < n b
305 304 biimpa T N b n T N + b < n T N < n b
306 285 286 294 303 305 syl31anc φ b 1 N n T N + b + 1 T N + N T N < n b
307 275 276 281 282 306 reprgt φ b 1 N n T N + b + 1 T N + N 1 N repr T n b =
308 307 sumeq1d φ b 1 N n T N + b + 1 T N + N d 1 N repr T n b a 0 ..^ T L a d a = d a 0 ..^ T L a d a
309 sum0 d a 0 ..^ T L a d a = 0
310 308 309 eqtrdi φ b 1 N n T N + b + 1 T N + N d 1 N repr T n b a 0 ..^ T L a d a = 0
311 310 oveq1d φ b 1 N n T N + b + 1 T N + N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b = 0 L T b Z n - b + b
312 74 adantr φ b 1 N n T N + b + 1 T N + N L T b
313 61 adantr φ b 1 N n T N + b + 1 T N + N Z
314 278 zcnd φ b 1 N n T N + b + 1 T N + N n
315 280 zcnd φ b 1 N n T N + b + 1 T N + N b
316 314 315 npcand φ b 1 N n T N + b + 1 T N + N n - b + b = n
317 316 293 eqeltrd φ b 1 N n T N + b + 1 T N + N n - b + b 0
318 313 317 expcld φ b 1 N n T N + b + 1 T N + N Z n - b + b
319 312 318 mulcld φ b 1 N n T N + b + 1 T N + N L T b Z n - b + b
320 319 mul02d φ b 1 N n T N + b + 1 T N + N 0 L T b Z n - b + b = 0
321 311 320 eqtrd φ b 1 N n T N + b + 1 T N + N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b = 0
322 40 a1i φ b 1 N n 0 ..^ b 1 N
323 fzossfz 0 ..^ b 0 b
324 fzssz 0 b
325 323 324 sstri 0 ..^ b
326 simpr φ b 1 N n 0 ..^ b n 0 ..^ b
327 325 326 sselid φ b 1 N n 0 ..^ b n
328 simplr φ b 1 N n 0 ..^ b b 1 N
329 328 elfzelzd φ b 1 N n 0 ..^ b b
330 327 329 zsubcld φ b 1 N n 0 ..^ b n b
331 5 ad2antrr φ b 1 N n 0 ..^ b T 0
332 330 zred φ b 1 N n 0 ..^ b n b
333 0red φ b 1 N n 0 ..^ b 0
334 27 ad2antrr φ b 1 N n 0 ..^ b T
335 elfzolt2 n 0 ..^ b n < b
336 335 adantl φ b 1 N n 0 ..^ b n < b
337 327 zred φ b 1 N n 0 ..^ b n
338 329 zred φ b 1 N n 0 ..^ b b
339 337 338 sublt0d φ b 1 N n 0 ..^ b n b < 0 n < b
340 336 339 mpbird φ b 1 N n 0 ..^ b n b < 0
341 63 ad2antrr φ b 1 N n 0 ..^ b 0 T
342 332 333 334 340 341 ltletrd φ b 1 N n 0 ..^ b n b < T
343 322 330 331 342 reprlt φ b 1 N n 0 ..^ b 1 N repr T n b =
344 343 sumeq1d φ b 1 N n 0 ..^ b d 1 N repr T n b a 0 ..^ T L a d a = d a 0 ..^ T L a d a
345 344 309 eqtrdi φ b 1 N n 0 ..^ b d 1 N repr T n b a 0 ..^ T L a d a = 0
346 345 oveq1d φ b 1 N n 0 ..^ b d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b = 0 L T b Z n - b + b
347 74 adantr φ b 1 N n 0 ..^ b L T b
348 61 adantr φ b 1 N n 0 ..^ b Z
349 337 recnd φ b 1 N n 0 ..^ b n
350 338 recnd φ b 1 N n 0 ..^ b b
351 349 350 npcand φ b 1 N n 0 ..^ b n - b + b = n
352 fzo0ssnn0 0 ..^ b 0
353 352 326 sselid φ b 1 N n 0 ..^ b n 0
354 351 353 eqeltrd φ b 1 N n 0 ..^ b n - b + b 0
355 348 354 expcld φ b 1 N n 0 ..^ b Z n - b + b
356 347 355 mulcld φ b 1 N n 0 ..^ b L T b Z n - b + b
357 356 mul02d φ b 1 N n 0 ..^ b 0 L T b Z n - b + b = 0
358 346 357 eqtrd φ b 1 N n 0 ..^ b d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b = 0
359 219 1 225 274 321 358 fsum2dsub φ m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = n = 0 T N + N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b
360 nn0sscn 0
361 360 5 sselid φ T
362 360 1 sselid φ N
363 361 362 adddirp1d φ T + 1 N = T N + N
364 363 oveq2d φ 0 T + 1 N = 0 T N + N
365 128 360 sstri 0 T + 1 N
366 simplr φ n 0 T + 1 N b 1 N n 0 T + 1 N
367 365 366 sselid φ n 0 T + 1 N b 1 N n
368 45 360 sstri 1 N
369 simpr φ n 0 T + 1 N b 1 N b 1 N
370 368 369 sselid φ n 0 T + 1 N b 1 N b
371 367 370 npcand φ n 0 T + 1 N b 1 N n - b + b = n
372 371 eqcomd φ n 0 T + 1 N b 1 N n = n - b + b
373 372 oveq2d φ n 0 T + 1 N b 1 N Z n = Z n - b + b
374 373 oveq2d φ n 0 T + 1 N b 1 N L T b Z n = L T b Z n - b + b
375 374 oveq2d φ n 0 T + 1 N b 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b
376 375 sumeq2dv φ n 0 T + 1 N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b
377 364 376 sumeq12dv φ n = 0 T + 1 N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n = n = 0 T N + N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n - b + b
378 359 377 eqtr4d φ m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = n = 0 T + 1 N b = 1 N d 1 N repr T n b a 0 ..^ T L a d a L T b Z n
379 105 adantlr φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a
380 110 adantlr φ m 0 T N b 1 N d 1 N repr T m Z m
381 77 adantlr φ m 0 T N b 1 N L T b Z b
382 381 adantr φ m 0 T N b 1 N d 1 N repr T m L T b Z b
383 379 380 382 mulassd φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = a 0 ..^ T L a d a Z m L T b Z b
384 74 ad4ant13 φ m 0 T N b 1 N d 1 N repr T m L T b
385 76 ad4ant13 φ m 0 T N b 1 N d 1 N repr T m Z b
386 380 384 385 mulassd φ m 0 T N b 1 N d 1 N repr T m Z m L T b Z b = Z m L T b Z b
387 384 380 385 mulassd φ m 0 T N b 1 N d 1 N repr T m L T b Z m Z b = L T b Z m Z b
388 380 384 mulcomd φ m 0 T N b 1 N d 1 N repr T m Z m L T b = L T b Z m
389 388 oveq1d φ m 0 T N b 1 N d 1 N repr T m Z m L T b Z b = L T b Z m Z b
390 106 adantlr φ m 0 T N b 1 N d 1 N repr T m Z
391 75 ad4ant13 φ m 0 T N b 1 N d 1 N repr T m b 0
392 109 adantlr φ m 0 T N b 1 N d 1 N repr T m m 0
393 390 391 392 expaddd φ m 0 T N b 1 N d 1 N repr T m Z m + b = Z m Z b
394 393 oveq2d φ m 0 T N b 1 N d 1 N repr T m L T b Z m + b = L T b Z m Z b
395 387 389 394 3eqtr4d φ m 0 T N b 1 N d 1 N repr T m Z m L T b Z b = L T b Z m + b
396 386 395 eqtr3d φ m 0 T N b 1 N d 1 N repr T m Z m L T b Z b = L T b Z m + b
397 396 oveq2d φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = a 0 ..^ T L a d a L T b Z m + b
398 383 397 eqtrd φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = a 0 ..^ T L a d a L T b Z m + b
399 398 sumeq2dv φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b
400 87 adantr φ m 0 T N b 1 N 1 N repr T m Fin
401 111 adantlr φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m
402 400 381 401 fsummulc1 φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b
403 74 adantlr φ m 0 T N b 1 N L T b
404 61 adantlr φ m 0 T N b 1 N Z
405 108 adantr φ m 0 T N b 1 N m 0
406 75 adantlr φ m 0 T N b 1 N b 0
407 405 406 nn0addcld φ m 0 T N b 1 N m + b 0
408 404 407 expcld φ m 0 T N b 1 N Z m + b
409 403 408 mulcld φ m 0 T N b 1 N L T b Z m + b
410 400 409 379 fsummulc1 φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b
411 399 402 410 3eqtr4rd φ m 0 T N b 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b
412 411 sumeq2dv φ m 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = b = 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b
413 412 sumeq2dv φ m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a L T b Z m + b = m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b
414 218 378 413 3eqtr2rd φ m = 0 T N b = 1 N d 1 N repr T m a 0 ..^ T L a d a Z m L T b Z b = m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m
415 80 113 414 3eqtr2d φ a 0 ..^ T b = 1 N L a b Z b b = 1 N L T b Z b = m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m
416 12 79 415 3eqtrd φ a 0 ..^ T + 1 b = 1 N L a b Z b = m = 0 T + 1 N d 1 N repr T + 1 m a 0 ..^ T + 1 L a d a Z m