Step |
Hyp |
Ref |
Expression |
1 |
|
breprexp.n |
|
2 |
|
breprexp.s |
|
3 |
|
breprexp.z |
|
4 |
|
breprexpnat.a |
|
5 |
|
breprexpnat.p |
|
6 |
|
breprexpnat.r |
|
7 |
|
fvex |
|
8 |
7
|
fconst |
|
9 |
|
nnex |
|
10 |
|
indf |
|
11 |
9 4 10
|
sylancr |
|
12 |
|
0cn |
|
13 |
|
ax-1cn |
|
14 |
|
prssi |
|
15 |
12 13 14
|
mp2an |
|
16 |
|
fss |
|
17 |
11 15 16
|
sylancl |
|
18 |
|
cnex |
|
19 |
18 9
|
elmap |
|
20 |
17 19
|
sylibr |
|
21 |
7
|
snss |
|
22 |
20 21
|
sylib |
|
23 |
|
fss |
|
24 |
8 22 23
|
sylancr |
|
25 |
1 2 3 24
|
breprexp |
|
26 |
7
|
fvconst2 |
|
27 |
26
|
ad2antlr |
|
28 |
27
|
fveq1d |
|
29 |
28
|
oveq1d |
|
30 |
29
|
sumeq2dv |
|
31 |
9
|
a1i |
|
32 |
|
fzfi |
|
33 |
32
|
a1i |
|
34 |
|
fz1ssnn |
|
35 |
34
|
a1i |
|
36 |
4
|
adantr |
|
37 |
3
|
ad2antrr |
|
38 |
|
nnssnn0 |
|
39 |
34 38
|
sstri |
|
40 |
|
simpr |
|
41 |
39 40
|
sselid |
|
42 |
37 41
|
expcld |
|
43 |
31 33 35 36 42
|
indsumin |
|
44 |
|
incom |
|
45 |
44
|
a1i |
|
46 |
45
|
sumeq1d |
|
47 |
30 43 46
|
3eqtrd |
|
48 |
47
|
prodeq2dv |
|
49 |
|
fzofi |
|
50 |
49
|
a1i |
|
51 |
|
inss2 |
|
52 |
|
ssfi |
|
53 |
32 51 52
|
mp2an |
|
54 |
53
|
a1i |
|
55 |
3
|
adantr |
|
56 |
51 39
|
sstri |
|
57 |
|
simpr |
|
58 |
56 57
|
sselid |
|
59 |
55 58
|
expcld |
|
60 |
54 59
|
fsumcl |
|
61 |
|
fprodconst |
|
62 |
50 60 61
|
syl2anc |
|
63 |
|
hashfzo0 |
|
64 |
2 63
|
syl |
|
65 |
64
|
oveq2d |
|
66 |
48 62 65
|
3eqtrd |
|
67 |
34
|
a1i |
|
68 |
|
fzssz |
|
69 |
|
simpr |
|
70 |
68 69
|
sselid |
|
71 |
2
|
adantr |
|
72 |
32
|
a1i |
|
73 |
67 70 71 72
|
reprfi |
|
74 |
3
|
adantr |
|
75 |
|
fz0ssnn0 |
|
76 |
75 69
|
sselid |
|
77 |
74 76
|
expcld |
|
78 |
49
|
a1i |
|
79 |
11
|
ad3antrrr |
|
80 |
34
|
a1i |
|
81 |
70
|
adantr |
|
82 |
71
|
adantr |
|
83 |
|
simpr |
|
84 |
80 81 82 83
|
reprf |
|
85 |
84
|
ffvelrnda |
|
86 |
34 85
|
sselid |
|
87 |
79 86
|
ffvelrnd |
|
88 |
15 87
|
sselid |
|
89 |
78 88
|
fprodcl |
|
90 |
73 77 89
|
fsummulc1 |
|
91 |
4
|
adantr |
|
92 |
91 70 71 72 67
|
hashreprin |
|
93 |
92
|
oveq1d |
|
94 |
26
|
fveq1d |
|
95 |
94
|
adantl |
|
96 |
95
|
prodeq2dv |
|
97 |
96
|
adantr |
|
98 |
97
|
oveq1d |
|
99 |
98
|
sumeq2dv |
|
100 |
90 93 99
|
3eqtr4rd |
|
101 |
100
|
sumeq2dv |
|
102 |
25 66 101
|
3eqtr3d |
|
103 |
5
|
oveq1i |
|
104 |
6
|
oveq1i |
|
105 |
104
|
a1i |
|
106 |
105
|
sumeq2i |
|
107 |
102 103 106
|
3eqtr4g |
|