Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
breq1
Next ⟩
breq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
breq1
Description:
Equality theorem for a binary relation.
(Contributed by
NM
, 31-Dec-1993)
Ref
Expression
Assertion
breq1
⊢
A
=
B
→
A
R
C
↔
B
R
C
Proof
Step
Hyp
Ref
Expression
1
opeq1
⊢
A
=
B
→
A
C
=
B
C
2
1
eleq1d
⊢
A
=
B
→
A
C
∈
R
↔
B
C
∈
R
3
df-br
⊢
A
R
C
↔
A
C
∈
R
4
df-br
⊢
B
R
C
↔
B
C
∈
R
5
2
3
4
3bitr4g
⊢
A
=
B
→
A
R
C
↔
B
R
C