Metamath Proof Explorer


Theorem breq123d

Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011)

Ref Expression
Hypotheses breq1d.1 φ A = B
breq123d.2 φ R = S
breq123d.3 φ C = D
Assertion breq123d φ A R C B S D

Proof

Step Hyp Ref Expression
1 breq1d.1 φ A = B
2 breq123d.2 φ R = S
3 breq123d.3 φ C = D
4 1 3 breq12d φ A R C B R D
5 2 breqd φ B R D B S D
6 4 5 bitrd φ A R C B S D